

 In Homework 2 I ask you to prove Theorem 3.1 in the textbook. So, an example of proving things using the definitions of asymptotic notation:

Asymptotic Notation and Proofs, Revisited

• Exercise 3.2-5 in the textbook asks you to prove something I thought was interesting . . .

Slide 2

Slide 4

• First show: If $f(n) = \Theta(g(n))$, then $f_w(n) = O(g(n))$ and $f_b(n) = \Omega(g(n))$. • From the definition of Θ , there are positive constants c_1, c_2 , and n_0 such that $0 \le c_1 g(n) \le f(n) \le c_2 g(n)$ for all $n \ge n_0$. • This has to be true for all cases, including the worst and best cases, so: $0 \le f_w(n) \le c_2 g(n)$ for all $n \ge n_0$, which is the definition of O(g(n)). and $0 \le c_1 g(n) \le f_b(n)$ for all $n \ge n_0$, which is the definition of $\Omega(g(n))$.

2

Slide 5 Slide 5 Proof Example, Continued • Now show: If $f_w(n) = O(g(n))$ and its $f_b(n) = \Omega(g(n))$, then $f(n) = \Theta(g(n))$. • From the definitions (doing a bit of renaming of constants): There are positive constants c_2 and n_2 such that $0 \le f_w(n) \le c_2g(n)$ for all $n \ge n_2$. There are positive constants c_1 and n_1 such that $0 \le c_1g(n) \le f_b(n)$) for all $n \ge n_1$. Note that $f_b(n) \le f(n) \le f_w(n)$, so if we let n_0 be the larger of n_1 and n_2 , for all $n \ge n_0$, $0 \le c_1g(n) \le f_b(n) \le f(n) \le f_w(n) \le c_2g(n)$ which is pretty much the definition of $f(n) = \Theta(g(n))$

Proof Example, Continued

- Done!
- Note, maybe, that this problem yielded to my usual approach for doing proofs: Start by writing down what you know, and see where you can go from there.

Slide 6

Slide 7

Slide 8

Quicksort

- You've probably heard of quicksort as a sorting algorithm? I think it's useful in this course as an example of several things: It's an example of divide and conquer (and one where the analysis of run time is a little tricky), and one where the "split" part is nontrivial and I think benefits from an approach based on a loop invariant.
- Next time ...

Minute Essay
Questions?
Have you taken Discrete (CSCI 1323)? With whom? If it's not nosy — did you like it? did you do well?

4