Administrivia

- As announced by e-mail, Reading Quiz 1 and Homework 1 graded; sample solutions and graded work on Google Drive.
- Reminder: Reading Quiz 2 due today.
- Homework 2 posted. Due next Monday.

Slide 1

- A few words about the textbook: If you're finding it sometimes slow going, so am I, alas. One online review I read said maybe this was not a good beginner book, despite its many strengths. I'm inclined to agree!

Asymptotic Notation and Proofs, Revisited

- In Homework 2 I ask you to prove Theorem 3.1 in the textbook. So, an example of proving things using the definitions of asymptotic notation:
- Exercise 3.2-5 in the textbook asks you to prove something I thought was interesting ...

Proof Example

- The problem as stated:

Prove that the running time of an algorithm is $\Theta(g(n))$ if and only if its worst-case running time is $O(g(n))$ and its best-case running time is $\Omega(g(n))$.

Slide 3

- When proving something of the form " A if and only if B ", we need to prove two things:
- If A then B.
- If B then A.

See how far we get just writing down relevant definitions ...

- Some notation first: Use $f(n)$ to mean running time of the algorithm, $f_{w}(n)$ to mean its worst-case running time, and $f_{b}(n)$ to mean its best-case running time.

Proof Example, Continued

- First show:

If $f(n)=\Theta(g(n))$, then $f_{w}(n)=O(g(n))$ and $f_{b}(n)=\Omega(g(n))$.

- From the definition of Θ, there are positive constants c_{1}, c_{2}, and n_{0} such that $0 \leq c_{1} g(n) \leq f(n) \leq c_{2} g(n)$ for all $n \geq n_{0}$.
- This has to be true for all cases, including the worst and best cases, so:
$0 \leq f_{w}(n) \leq c_{2} g(n)$ for all $n \geq n_{0}$, which is the definition of $O(g(n))$. and $0 \leq c_{1} g(n) \leq f_{b}(n)$ for all $n \geq n_{0}$, which is the definition of $\Omega(g(n))$.

Proof Example, Continued

- Now show:

If $f_{w}(n)=O(g(n))$ and its $f_{b}(n)=\Omega(g(n))$, then $f(n)=\Theta(g(n))$.

- From the definitions (doing a bit of renaming of constants):

There are positive constants c_{2} and n_{2} such that $0 \leq f_{w}(n) \leq c_{2} g(n)$ for

Slide 5

 all $n \geq n_{2}$.There are positive constants c_{1} and n_{1} such that $\left.0 \leq c_{1} g(n) \leq f_{b}(n)\right)$ for all $n \geq n_{1}$.
Note that $f_{b}(n) \leq f(n) \leq f_{w}(n)$, so if we let n_{0} be the larger of n_{1} and n_{2}, for all $n \geq n_{0}$,

$$
0 \leq c_{1} g(n) \leq f_{b}(n) \leq f(n) \leq f_{w}(n) \leq c_{2} g(n)
$$

which is pretty much the definition of $f(n)=\Theta(g(n))$

Proof Example, Continued

- Done!
- Note, maybe, that this problem yielded to my usual approach for doing proofs: Start by writing down what you know, and see where you can go from there.

Slide 6

Quicksort

- You've probably heard of quicksort as a sorting algorithm? I think it's useful in this course as an example of several things: It's an example of divide and conquer (and one where the analysis of run time is a little tricky), and one where the "split" part is nontrivial and I think benefits from an approach based

Slide 7

 on a loop invariant.- Next time...

Minute Essay

- Questions?
- Have you taken Discrete (CSCI 1323)? With whom? If it's not nosy — did you like it? did you do well?

Slide 8

