
CSCI 3323 (Principles of Operating Systems), Fall 2011

Homework 2

Credit: 20 points.

1 Reading

Be sure you have read Chapter 2, sections 2.1 through 2.3.

2 Problems

Answer the following questions. You may write out your answers by hand or using a word processor
or other program, but please submit hard copy, either in class or in my mailbox in the department
office.

1. (5 points) In class we discussed a proposed solution to the mutual-exclusion problem based
on disabling interrupts, and rejected it because it doesn’t work for systems with more than one
CPU. For a system with a single CPU, however, this could be an acceptable solution, especially
if the critical region is short. Write pseudocode for an implementation of semaphores for a
single-CPU system that might not have a TSL instruction but does have library functions
enable int() and disable int() to enable and disable interrupts respectively. (I.e., say
what variables you would need for each semaphore, and give pseudocode for up() and down().)

2. (5 points) The programming assignment for Homework 1 asked you to write a simple shell
program using fork() to create a new process for each command executed by the shell.
fork() essentially creates this new process by duplicating the process that calls it, including
the state of any data structures related to open files. What advantages does this have? What
are some possible disadvantages? Consider both situations in which the parent process waits
for the child to finish (as in the shell program) and situations in which both processes continue
concurrently. (Hint: Think about the standard input/output/error streams and also about
other kinds of open files. Also try to apply what you know about buffering of input/output.)

3 Programming Problems

Do the following programming problems. You will end up with at least one code file per prob-
lem. Submit your program source (and any other needed files) by sending mail to bmassing@cs.

trinity.edu, with each file as an attachment. Please use a subject line that mentions the course
number and the assignment (e.g., “csci 3323 homework 2”). You can develop your programs on
any system that provides the needed functionality, but I will test them on one of the department’s
Linux machines, so you should probably make sure they work in that environment before turning
them in.

1. (10 points) The starting point for this problem is a simple implementation of the mutual
exclusion problem in C with POSIX threads m-e-problem.c1. Each thread executes a loop
similar to the one presented in class for this problem, except that:

1http://www.cs.trinity.edu/~bmassing/Classes/CS3323_2011fall/Homeworks/HW02/Problems/

m-e-problem.c

1



CSCI 3323 Homework 2 Fall 2011

• Rather than looping forever, each thread makes a finite number of trips through the
loop.

• The critical region is represented by code to print some messages and sleep for a random
interval.

• The non-critical region is represented by code to sleep for a random interval.

Currently no attempt is made to ensure that only one thread at a time is in its critical region,
and if you run it you will see that in fact it frequently happens that all the threads are in
their critical region at the same time. Your mission is to correct this.

Start by compiling the program, running it, and observing its behavior. To compile with gcc,
you will need the extra flag -pthread, e.g.

gcc -o m-e-problem -pthread m-e-problem.c

The program requires several command-line arguments, described in comments at the top
of the code. (If you have trouble remembering the order, notice that the program prints a
meant-to-be-helpful usage message if run with no arguments.)

You are to produce two corrected versions of this program:

• The first version should use shared variables only (declare them volatile so the compiler
knows that it should access them in memory every time rather than keeping them in
registers) and one of the following algorithms:

– Strict alternation, extended to work for an arbitrary number of threads. (No, this
isn’t a perfect solution, but it does enforce the “one at a time” condition.)

– Peterson’s algorithm, for two threads only. For extra credit, research and implement
a variation that works for more than two threads. Cite a source for your solution
if appropriate — e.g., “I found pseudocode for this solution at the following Web
site.” Or look up and implement Leslie Lamport’s bakery algorithm.

• The second version should use one of the following sets of library functions:

– The POSIX threads mutex functions. man pthread mutex init is a good starting
point for finding out about these functions.

– The POSIX threads semaphore functions. man sem init is a good starting point
for finding out about these functions.

Places in the program that should change are marked with “TODO” comments. You should
not need to add much code. Confirm that your two improved versions behave as expected,
i.e., when one thread starts its critical region no other thread can start its critical region until
the first one finishes.

2


