
CSCI 3323 (Principles of Operating Systems), Fall 2011

Homework 6

Credit: 10 points.

1 Reading

Be sure you have read Chapter 4.

2 Problems

Answer the following questions. You may write out your answers by hand or using a word processor
or other program, but please submit hard copy, either in class or in my mailbox in the department
office.

1. (5 points) The textbook describes more than one strategy for keeping track of free blocks
in a file system (free blocks, bitmaps, and FATs). All of these strategies rely on information
that is kept both on disk and in memory, sometimes with the most-current information only
in memory. What would happen if the copy on disk of whatever data structure is used to
keep track of free blocks was lost or damaged because of a system crash — is there a way to
recover, or do you have to just reformat the disk and hope you backed up any really important
files? Answer separately for MS-DOS FAT-16 (which uses a FAT) and UNIX V7 filesystems
(which uses one of the other strategies).

2. (5 points) Consider a UNIX filesystem (as described in section 4.5.3) in which each i-node
contains 10 direct entries, one single-indirect entry, one double-indirect entry, and one triple-
indirect entry. If a block is 1KB (1024 bytes) and a disk addresses is 4 bytes, what is the
maximum file size, in KB? (Hint: Use the blocksize and size of disk addresses to determine
how many entries each indirect block contain.)

3 Programming Problems

For extra credit, do one or more of the following programming problems. You will end up with
at least one code file per problem. Submit your program source (and any other needed files) by
sending mail to bmassing@cs.trinity.edu, with each file as an attachment. Please use a subject
line that mentions the course number and the assignment (e.g., “csci 3323 homework 6”). You can
develop your programs on any system that provides the needed functionality, but I will test them
on one of the department’s Linux machines, so you should probably make sure they work in that
environment before turning them in.

1. (Optional — up to 5 extra-credit points) Write a program that given a directory D, blocksize
B, and maximum number of blocks M as command-line arguments prints out how many files
in D and its subdirectories are of size B or less, how many are of size between B and 2B,
etc., up to size MB. (This might be useful in getting an idea of what size files are typical,
so if you had a choice of blocksize you would know what choice might make the most sense.)
Include directories and symbolic links (but count the size of the link and not the file/directory

1



CSCI 3323 Homework 6 Fall 2011

it links to). Also turn in output of running this program on your home directory in /users

with B and M as below.

Here is sample output for running the program with D = /lib, B = 4096, and M = 20, on
Xena00:

Results for directory /lib with blocksize 4096:

814 files of size 1 blocks

902 files of size 2 blocks

866 files of size 3 blocks

725 files of size 4 blocks

557 files of size 5 blocks

424 files of size 6 blocks

273 files of size 7 blocks

225 files of size 8 blocks

204 files of size 9 blocks

184 files of size 10 blocks

122 files of size 11 blocks

140 files of size 12 blocks

145 files of size 13 blocks

80 files of size 14 blocks

89 files of size 15 blocks

64 files of size 16 blocks

85 files of size 17 blocks

76 files of size 18 blocks

45 files of size 19 blocks

39 files of size 20 blocks

758 files of size 21 blocks or more

(Of course, you won’t be able to examine files in directories you don’t have access to. Just
print error messages for files/directories you can’t access.)

To get maximum points, your program should be in C or C++ and make no use of system
commands such as ls. (You can use another language, or even write a shell script, but
you will get fewer points.) Library functions opendir, readdir, and lstat will probably be
helpful. You might also be interested in functions chdir and strerror. These functions are
described by man pages. (Remember also that man -a foo gives all man pages for foo. This
can be helpful if there is both a command foo and a functionfoo.)

Here is some starter code1 that parses/checks the command-line arguments.

2. (Optional — up to 5 extra-credit points) Write a program that given a directory D as a
command-line argument prints all the “broken” symbolic links in D or any of its subdirec-
tories — that is, symbolic links that point to a file that doesn’t exist. Here is sample out-
put for running the program with D = /users/bmassing/Local/HTML-Documents/CS4320/

Homeworks/HW04/Problems:

Broken symbolic links in /users/bmassing/Local/HTML-Documents/CS3323/Homeworks/HW06/Problems:

/users/bmassing/Local/HTML-Documents/Classes/CS3323_2011fall/Homeworks/HW06/Problems/TestData/foobar

/users/bmassing/Local/HTML-Documents/Classes/CS3323_2011fall/Homeworks/HW06/Problems/TestData/barfoo

1http://www.cs.trinity.edu/~bmassing/Classes/CS3323_2011fall/Homeworks/HW06/Problems/filesizes.c

2



CSCI 3323 Homework 6 Fall 2011

(Again, you won’t be able to examine files in directories you don’t have access to, so just print
error messages. You should be able to access everything in the above directory, however. If
you want to create some test data of your own, remember that to make a symbolic link called
sym pointing to foo, you type ln -s foo sym.)

To get maximum points, your program should be in C or C++ and make no use of system
commands such as ls. (You can use another language, or even write a shell script, but
you will get fewer points.) The library routines mentioned for the previous problem may be
helpful. The starter code may also be helpful, in reminding you how to access command-line
arguments in C.

3. (Optional — up to 5 extra-credit points) Write a program that given a directory D as a
command-line argument finds all the files in D or any of its subdirectories to which there
are two or more hard links and prints, for each of them, all the paths within D that point
to that file. Here is sample output for running the program with D = /users/bmassing/

Local/HTML-Documents/CS4320/Homeworks/HW06/Problems:

Files with multiple hard links in /users/bmassing/Local/HTML-Documents/CS3323/Homeworks/HW06/Problems:

/users/bmassing/Local/HTML-Documents/Classes/CS3323_2011fall/Homeworks/HW06/Problems/TestData/bbbb

/users/bmassing/Local/HTML-Documents/Classes/CS3323_2011fall/Homeworks/HW06/Problems/TestData/b

/users/bmassing/Local/HTML-Documents/Classes/CS3323_2011fall/Homeworks/HW06/Problems/TestData/bb

/users/bmassing/Local/HTML-Documents/Classes/CS3323_2011fall/Homeworks/HW06/Problems/TestData/bbb

/users/bmassing/Local/HTML-Documents/Classes/CS3323_2011fall/Homeworks/HW06/Problems/TestData/dd

/users/bmassing/Local/HTML-Documents/Classes/CS3323_2011fall/Homeworks/HW06/Problems/TestData/d

This output means that the two pathnames in the first group reference the same file, the four
pathnames in the second group reference the same file, etc. Output can be in any order as
long as paths that reference the same file are grouped together. (Again, you won’t be able to
examine files in directories you don’t have access to, so just print error messages. You should
be able to access everything in the above directory, however. If you want to create some test
data of your own, remember that to make a hard link called sym pointing to foo, you type
ln foo sym.)

To get maximum points, your program should be in C or C++ and make no use of system
commands such as ls. (You can use another language, or even write a shell script, but you
will get fewer points.) The library routines mentioned for the previous problems may be
helpful. The starter code may also be helpful, in reminding you how to access command-line
arguments in C.

3


