
CSCI 3323 September 14, 2011

Slide 1

Administrivia

• Reminder: No class Friday (campus-wide retreat).

Slide 2

Minute Essay From Last Lecture

• Difficult: Getting re-acclimated to C. (That was partly the point of the

assignment — one more opportunity to practice with the language.) Also

figuring out exactly what parameters to pass to the system-call library

functions.

• Interesting: That it’s not that hard to implement a simple shell. (Adding

features could be an entertaining side project?)

• Interesting: How fork and execve work.

• Interesting: How many system calls are needed for even simple programs.

(That also was partly the point of that problem.)

• Interesting(?): That cd apparently doesn’t work. (Why?)



CSCI 3323 September 14, 2011

Slide 3

Process Abstraction — Review/Recap

• Processes are a key abstraction in “o/s as virtual machine”. Each can be

thought of (at least to some extent) as a program running on its own CPU with

its own memory (“address space”). (Nitpick: We probably also want some

way to allow processes to share some memory, but — later.)

• How to map this to the real hardware? in this chapter we talk about how to

share the real CPU(s) among processes; in the next chapter we talk about

how to share the real memory.

Slide 4

Context Switches — Review/Recap

• Sharing real CPU(s) among processes probably means we need a way to

“timeshare” among them. An obvious(?) way to do that involves executing

code from one process for a while, then switching to another, with the idea

that when we come back to the first process we pick up where we left off.

• Context switches normally (always?) triggered by various kinds of interrupts.

• Details of what happens in a context switch all pretty much flow from these

two things.



CSCI 3323 September 14, 2011

Slide 5

Process States

• Can think of processes as being in one of three states:

– “Running” — being executed by a CPU.

– “Blocked” — waiting for something to happen (I/O to complete, another

process to do something, etc.) and unable to do anything useful until it

does.

– “Ready” — not blocked, but waiting because all CPUs are currently

executing other processes.

• Possible transitions? Which ones require decision-making?

Slide 6

Process States, Continued

• Possible transitions (figure in textbook, p. 90):

– Running to blocked — happens when, e.g., a process makes an I/O

request and can’t continue until it’s complete.

– Blocked to ready — happens when the event the blocked process is

waiting for occurs.

– Running to ready, ready to running — needed if we want some sort of

time-sharing (give all non-blocked processes “a turn” frequently).

• Notice that moving to and from “blocked” state doesn’t involve

decision-making, but ready/running transitions do.

• The decision-maker — “scheduler” (to be discussed later). Often “running to

ready” is triggered by an interrupt (I/O, timer, etc.), and “ready to running”

involves this scheduler.



CSCI 3323 September 14, 2011

Slide 7

Implementing Processes

• Think about how you would implement this abstraction . . .

• First, you’d want a data structure to represent each process, to include —

what?

Slide 8

Implementing Processes, Continued

• Data structure to represent each process would include some way to

represent such things as:

– Process ID.

– Process state (running / ready / blocked).

– Information needed for context switch — a place to save program counter,

registers, etc.

– Other stuff as needed — e.g., a list of data structures for open files.

• Then you’d collect these into a table (or some similar structure) — “process

control table”, with individual data structures being “entries in the process

control table” or “process control blocks”.



CSCI 3323 September 14, 2011

Slide 9

Implementing Processes, Example — Linux

• Each process (“task”) is represented by a C struct containing information

similar to what we described.

• These structs are chained as a doubly-linked list; there is also a hash

table keyed by PID.

• (This is according to online information about the 2.4 kernel.)

Slide 10

Processes Versus Threads

• So far I’ve used “process” in an abstract/general way.

• In typical implementations, though, “process” is more specific — something

that has its own address space, list of open files, etc. Often these are called

“heavyweight processes”.

– Advantages — such processes don’t interfere with each other.

– Disadvantages — they can’t easily share data, switching between them is

expensive (“a lot of state” to save/restore).

• For some applications, might be nice to have something that implements the

abstract process idea but allows sharing data and faster context switching —

“threads”.



CSCI 3323 September 14, 2011

Slide 11

Threads

• So, threads are another way to implement the process abstraction.

• Typically, a thread is “owned” by a (heavyweight) process, and all threads

owned by a process share some of its state — address space, list of open

files.

• However, each thread has a “virtual CPU” (a distinct copy of registers,

including program counter).

• Implementation involves data structures similar to process table.

• Advantages / disadvantages (compared to processes)?

Slide 12

Threads, Continued

• Advantages: threads can share data (same address space), switching from

thread to thread is fairly fast.

• Disadvantages: sharing data has its hazards (more about this later).



CSCI 3323 September 14, 2011

Slide 13

Implementing Threads

• Two basic approaches — “in user space” and “in kernel space” Various hybrid

schemes also possible.

• Basic idea of “in user space” — operating system thinks it’s managing

single-threaded processes, all the work of managing multiple threads

happens via library calls within each process.

• Basic idea of “in kernel space” — operating system is involved in managing

threads, the work of managing multiple threads happens via system calls

(rather than user-level library calls).

• How do they compare?. . .

Slide 14

Implementing Threads, Continued

• Implementing in user space is likely more efficient — fewer system calls.

• Implementing in kernel space avoids some problems, though:

– If a thread blocks, it may do so in a way that blocks the whole process.

– Preemptive multitasking is difficult/impossible without help from the kernel,

as is using multiple CPUs.



CSCI 3323 September 14, 2011

Slide 15

Adding Multithreading

• If you’ve written multithreaded applications — moving from single-threaded to

multithreaded not trivial:

– Figure out how to split up computation among threads.

– Coordinate threads’ actions (including dealing properly with shared

variables).

• Similar problems in adding multithreading to systems-level programs:

– Deal properly with shared variables (including ones that may be hidden).

– Deal properly with signals/interrupts.

Slide 16

Implementing Threads, Example — Linux

• Early versions of Linux provided no support for kernel-space threading, but

there were libraries for the user-space version.

• More-recent kernels provide support, but in an interesting way — threads in

some ways are just processes with with some different flags allowing them to

share memory, etc.

Adding support for threads complicates process creation — the basic

mechanism (fork) duplicates an existing process, and if that process is

multithreaded, things can be interesting. Some details in chapter 10, or read

the POSIX standard for fork.



CSCI 3323 September 14, 2011

Slide 17

Minute Essay

• None — quiz.


