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Administrivia

• Reminder: No class Friday (campus-wide retreat).
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Minute Essay From Last Lecture

• Difficult: Getting re-acclimated to C. (That was partly the point of the

assignment — one more opportunity to practice with the language.) Also

figuring out exactly what parameters to pass to the system-call library

functions.

• Interesting: That it’s not that hard to implement a simple shell. (Adding

features could be an entertaining side project?)

• Interesting: How fork and execve work.

• Interesting: How many system calls are needed for even simple programs.

(That also was partly the point of that problem.)

• Interesting(?): That cd apparently doesn’t work. (Why?)
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Process Abstraction — Review/Recap

• Processes are a key abstraction in “o/s as virtual machine”. Each can be

thought of (at least to some extent) as a program running on its own CPU with

its own memory (“address space”). (Nitpick: We probably also want some

way to allow processes to share some memory, but — later.)

• How to map this to the real hardware? in this chapter we talk about how to

share the real CPU(s) among processes; in the next chapter we talk about

how to share the real memory.
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Context Switches — Review/Recap

• Sharing real CPU(s) among processes probably means we need a way to

“timeshare” among them. An obvious(?) way to do that involves executing

code from one process for a while, then switching to another, with the idea

that when we come back to the first process we pick up where we left off.

• Context switches normally (always?) triggered by various kinds of interrupts.

• Details of what happens in a context switch all pretty much flow from these

two things.
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Process States

• Can think of processes as being in one of three states:

– “Running” — being executed by a CPU.

– “Blocked” — waiting for something to happen (I/O to complete, another

process to do something, etc.) and unable to do anything useful until it

does.

– “Ready” — not blocked, but waiting because all CPUs are currently

executing other processes.

• Possible transitions? Which ones require decision-making?
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Process States, Continued

• Possible transitions (figure in textbook, p. 90):

– Running to blocked — happens when, e.g., a process makes an I/O

request and can’t continue until it’s complete.

– Blocked to ready — happens when the event the blocked process is

waiting for occurs.

– Running to ready, ready to running — needed if we want some sort of

time-sharing (give all non-blocked processes “a turn” frequently).

• Notice that moving to and from “blocked” state doesn’t involve

decision-making, but ready/running transitions do.

• The decision-maker — “scheduler” (to be discussed later). Often “running to

ready” is triggered by an interrupt (I/O, timer, etc.), and “ready to running”

involves this scheduler.
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Implementing Processes

• Think about how you would implement this abstraction . . .

• First, you’d want a data structure to represent each process, to include —

what?
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Implementing Processes, Continued

• Data structure to represent each process would include some way to

represent such things as:

– Process ID.

– Process state (running / ready / blocked).

– Information needed for context switch — a place to save program counter,

registers, etc.

– Other stuff as needed — e.g., a list of data structures for open files.

• Then you’d collect these into a table (or some similar structure) — “process

control table”, with individual data structures being “entries in the process

control table” or “process control blocks”.
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Implementing Processes, Example — Linux

• Each process (“task”) is represented by a C struct containing information

similar to what we described.

• These structs are chained as a doubly-linked list; there is also a hash

table keyed by PID.

• (This is according to online information about the 2.4 kernel.)
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Processes Versus Threads

• So far I’ve used “process” in an abstract/general way.

• In typical implementations, though, “process” is more specific — something

that has its own address space, list of open files, etc. Often these are called

“heavyweight processes”.

– Advantages — such processes don’t interfere with each other.

– Disadvantages — they can’t easily share data, switching between them is

expensive (“a lot of state” to save/restore).

• For some applications, might be nice to have something that implements the

abstract process idea but allows sharing data and faster context switching —

“threads”.
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Threads

• So, threads are another way to implement the process abstraction.

• Typically, a thread is “owned” by a (heavyweight) process, and all threads

owned by a process share some of its state — address space, list of open

files.

• However, each thread has a “virtual CPU” (a distinct copy of registers,

including program counter).

• Implementation involves data structures similar to process table.

• Advantages / disadvantages (compared to processes)?
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Threads, Continued

• Advantages: threads can share data (same address space), switching from

thread to thread is fairly fast.

• Disadvantages: sharing data has its hazards (more about this later).
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Implementing Threads

• Two basic approaches — “in user space” and “in kernel space” Various hybrid

schemes also possible.

• Basic idea of “in user space” — operating system thinks it’s managing

single-threaded processes, all the work of managing multiple threads

happens via library calls within each process.

• Basic idea of “in kernel space” — operating system is involved in managing

threads, the work of managing multiple threads happens via system calls

(rather than user-level library calls).

• How do they compare?. . .
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Implementing Threads, Continued

• Implementing in user space is likely more efficient — fewer system calls.

• Implementing in kernel space avoids some problems, though:

– If a thread blocks, it may do so in a way that blocks the whole process.

– Preemptive multitasking is difficult/impossible without help from the kernel,

as is using multiple CPUs.
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Adding Multithreading

• If you’ve written multithreaded applications — moving from single-threaded to

multithreaded not trivial:

– Figure out how to split up computation among threads.

– Coordinate threads’ actions (including dealing properly with shared

variables).

• Similar problems in adding multithreading to systems-level programs:

– Deal properly with shared variables (including ones that may be hidden).

– Deal properly with signals/interrupts.
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Implementing Threads, Example — Linux

• Early versions of Linux provided no support for kernel-space threading, but

there were libraries for the user-space version.

• More-recent kernels provide support, but in an interesting way — threads in

some ways are just processes with with some different flags allowing them to

share memory, etc.

Adding support for threads complicates process creation — the basic

mechanism (fork) duplicates an existing process, and if that process is

multithreaded, things can be interesting. Some details in chapter 10, or read

the POSIX standard for fork.
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Minute Essay

• None — quiz.


