
CSCI 3323 September 21, 2011

Slide 1

Administrivia

• (None.)

Slide 2

Minute Essay From Last Lecture

• Experience with various kinds of concurrency — a few people have taken

CSCI 3366, several wrote some threaded/network programs for PAD II

(Lewis!), message-passing MAS (Zhang), Scala actors, message-passing,

multithreading in GUI,

• Examples of situations in which mutual exclusion is needed — maintaining

integrity of a database (one person had a real-world situation), stock trading

(I’m a bit skeptical but maybe), collision modeling, using I/O resources (e.g.,

printer), simultaneous editing of files,

One person mentioned situations in which concurrency within an application

would be helpful.



CSCI 3323 September 21, 2011

Slide 3

Review — Mutual Exclusion Problem

• In many situations, we want only one process at a time to have access to

some shared resource.

• Generic/abstract version — multiple processes, each with a “critical region”

(“critical section”):
while (true) {

// wait here if not "safe" to proceed

do_cr(); // must be "finite"

do_non_cr(); // need not be "finite"

}

• Goal is to add something to this code such that:

1. No more than one process at a time can be “in its critical region”.

2. No process not in its critical region can block another process.

3. No process waits forever to enter its critical region.

4. No assumptions are made about how many CPUs, their speeds.

Slide 4

Proposed Solution — Peterson’s Algorithm

• Shared variables:
int turn = 0; // "who tried most recently"

bool interested0 = false, interested1 = false;

Pseudocode for process p0:
while (true) {

interested0 = true;

turn = 0;

while ((turn == 0)

&& interested1);

do_cr();

interested0 = false;

do_non_cr();

}

Pseudocode for process p1:
while (true) {

interested1 = true;

turn = 1;

while ((turn == 1)

&& interested0);

do_cr();

interested1 = false;

do_non_cr();

}

• Does it work? Yes.



CSCI 3323 September 21, 2011

Slide 5

Peterson’s Algorithm, Continued

• Intuitive idea — p0 can only start do cr() if either p1 isn’t interested, or p1

is interested but it’s p0’s turn; turn “breaks ties”.

• Semi-formal proof using invariants is a bit tricky. Proposed invariant: “If p0 is

in its critical region, interested0 is true and either interested1 is

false or turn is 1”; similarly for p1.

If we can show this is an invariant, first requirement is met. Others are too.

But a fiddly detail — the invariant can be false if p0 is in its critical region

when p1 executes the lines interested1 = true; turn = 1;.

See next slide for revision.

Slide 6

Peterson’s Algorithm, Continued

• Shared variables:
int turn = 0; // "who tried most recently"

bool interested0 = false, interested1 = false;

Pseudocode for process p0:
while (true) {

interested0 = true; // L1

turn = 0; // L2

while ((turn == 0)

&& interested1);

do_cr();

interested0 = false;

do_non_cr();

}

Pseudocode for process p1:
while (true) {

interested1 = true; // L1

turn = 1; // L2

while ((turn == 1)

&& interested0);

do_cr();

interested1 = false;

do_non_cr();

}

• Revised invariant: “If p0 is in its critical region, interested0 is true and

one of the following is true: interested1 is false, turn is 1, or p1 is

between L1 and L2”, and similarly for p1. Ugly but works.



CSCI 3323 September 21, 2011

Slide 7

Peterson’s Algorithm, Continued

• Requires essentially no hardware support (aside from “no two simultaneous

writes to memory location X” – pretty much a given). Can be extended to

more than two processes.

• But complicated and not very efficient.

Slide 8

Sidebar: TSL Instruction

• A key problem in concurrent algorithms is the idea of “atomicity” (operations

guaranteed to execute without interference from another CPU/process).

Hardware can provide some help with this.

• E.g., “test and set lock” (TSL) instruction:

TSL registerX, lockVar

(1) copies lockVar to registerX and (2) sets lockVar to non-zero,

all as one atomic operation.

How to make this work is the hardware designers’ problem!



CSCI 3323 September 21, 2011

Slide 9

Proposed Solution Using TSL Instruction

• Shared variables:
int lock = 0;

Pseudocode for each process:
while (true) {

enter_cr();

do_cr();

leave_cr();

do_non_cr();

}

Assembly-language routines:
enter_cr:

TSL regX, lock

compare regX with 0

if not equal

jump to enter_cr

return

leave_cr:

store 0 in lock

return

• Does it work? Yes. (Proposed invariant: “lock is 0 exactly when no

processes in their critical regions, and nonzero exactly when one process in

its critical region.”)

Slide 10

Solution Using TSL Instruction, Continued

• Proposed invariant: “lock is 0 exactly when no processes in their critical

regions, and nonzero exactly when one process in its critical region.”

• Invariant holds.

This means first requirement is met. Others met too — well, except that it

might be “unfair” (some process waits forever).

• Is this a better solution? Simpler than Peterson’s algorithm, but still involves

busy-waiting, and depends on hardware features that might not be present.



CSCI 3323 September 21, 2011

Slide 11

Mutual Exclusion Solutions So Far

• Solutions so far have some problems: inefficient, dependent on whether

scheduler/etc. guarantees fairness.

(It’s worth noting too that for the simple ones needing no special hardware —

e.g., Peterson’s algorithm — whether they work on real hardware may depend

on whether values “written” to memory are actually written right away or

cached.)

• Also, they’re very low-level, so might be hard to use for more complicated

problems.

• So, people have proposed various “synchronization mechanisms” . . .

Slide 12

Semaphores

• History — 1965 paper by Dijkstra (possibly earlier work by Iverson, of APL/J

fame).

• Idea — define semaphore ADT:

– “Value” — non-negative integer.

– Two operations, both atomic:

∗ up (V) — add one to value.

∗ down (P) — block until value is nonzero, then subtract one.

• Ignoring for now how to implement this — is it useful?



CSCI 3323 September 21, 2011

Slide 13

Mutual Exclusion Using Semaphores

• Shared variables:

semaphore S(1);

Pseudocode for each process:

while (true) {

down(S);

do_cr();

up(S);

do_non_cr();

}

• Invariant: “S has value 1 exactly when no process in its critical region, 0

exactly when one process in its critical region, and never has values other

than 0 or 1.”

Slide 14

Mutual Exclusion Using Semaphores, Continued

• Invariant again: “S has value 1 exactly when no process in its critical region, 0

exactly when one process in its critical region, and never has values other

than 0 or 1.”

Obvious (?) that this means first requirement is met. Can check that others

are met too.



CSCI 3323 September 21, 2011

Slide 15

Minute Essay

• The textbook discusses another instruction that could be useful in

implementing some sort of locking, one that swaps the contents of a register

and a memory word in a single indivisible action. If you had this instruction

(call it SWAP) but no TSL, how would you write the enter cr and

leave cr routines?

Slide 16

Minute Essay Answer

• See p. 125 of the textbook. (XCHG is what I’ve called SWAP.)


