CSCI 3323 September 21, 2011

Administrivia

e (None.)

Slide 1

Minute Essay From Last Lecture

e Experience with various kinds of concurrency — a few people have taken
CSCI 3366, several wrote some threaded/network programs for PAD |l
(Lewis!), message-passing MAS (Zhang), Scala actors, message-passing,

multithreading in GUI,

Slide 2 e Examples of situations in which mutual exclusion is needed — maintaining
integrity of a database (one person had a real-world situation), stock trading
('m a bit skeptical but maybe), collision modeling, using I/O resources (e.g.,

printer), simultaneous editing of files,

One person mentioned situations in which concurrency within an application

would be helpful.

CSCI 3323

September 21, 2011

Slide 3

Review — Mutual Exclusion Problem

e In many situations, we want only one process at a time to have access to

some shared resource.

n

e Generic/abstract version — multiple processes, each with a “critical region

(“critical section”):

while (true) {
I/ wait here if not "safe" to proceed
do_cr(); /1 nust be "finite"
do_non_cr(); /1 need not be "finite"

e Goal is to add something to this code such that:
1. No more than one process at a time can be “in its critical region”.
2. No process not in its critical region can block another process.
3. No process waits forever to enter its critical region.
4

. No assumptions are made about how many CPUs, their speeds.

Slide 4

Proposed Solution — Peterson’s Algorithm

e Shared variables:

int turn =0; // "who tried nost recently"
bool interested0 = false, interestedl = fal se;

Pseudocode for process pO: Pseudocode for process p1:
while (true) { while (true) {

interested0 = true; interestedl = true;

turn = 0; turn = 1;

while ((turn == 0) while ((turn == 1)

&% interestedl); && interestedo);

do_cr(); do_cr();

interested0 = fal se; interestedl = fal se;

do_non_cr(); do_non_cr();
} }

o Does it work? Yes.

CSCI 3323 September 21, 2011

4)

Peterson’s Algorithm, Continued

e Intuitive idea — p0 can only start do_cr () if either p1 isn’t interested, or p1
is interested but it's pO’s turn; t Ur N “breaks ties”.

e Semi-formal proof using invariants is a bit tricky. Proposed invariant: “If pO is
in its critical region, i Nt er est edO is true and either i nt er est edlis

Slide 5 false or t ur nis 17; similarly for p1.

If we can show this is an invariant, first requirement is met. Others are too.

But a fiddly detail — the invariant can be false if p0 is in its critical region

when p1 executes the linesi nterestedl = true; turn = 1;.

See next slide for revision.

Peterson’s Algorithm, Continued

e Shared variables:

int turn =0; // "who tried nost recently"
bool interested0 = false, interestedl = fal se;

Pseudocode for process pO: Pseudocode for process p1:
while (true) { while (true) {

interested0 = true; // L1 interestedl = true; // L1

turn = 0; Il L2 turn = 1; 11 L2

Slide 6 while ((turn == 0) while ((turn == 1)
&% interestedl); && interestedo);

do_cr(); do_cr();

interested0 = fal se; interestedl = fal se;

do_non_cr(); do_non_cr();
} }

e Revised invariant: “If p0 is in its critical region, i nt er est edO is true and
one of the following is true: i Nt er est edl isfalse,t urnis 1, orplis
between L1 and L2", and similarly for p1. Ugly but works.

CSCI 3323 September 21, 2011

Peterson’s Algorithm, Continued

e Requires essentially no hardware support (aside from “no two simultaneous
writes to memory location X" — pretty much a given). Can be extended to
more than two processes.

e But complicated and not very efficient.

Slide 7

Sidebar: TSL Instruction

e A key problem in concurrent algorithms is the idea of “atomicity” (operations
guaranteed to execute without interference from another CPU/process).
Hardware can provide some help with this.

e E.g., “test and set lock” (TSL) instruction:

Slide 8 TSL registerX, |ockVar

(1) copies | ockVar tor egi st er Xand (2) sets | ockVar to non-zero,
all as one atomic operation.

How to make this work is the hardware designers’ problem!

CSCI 3323 September 21, 2011

4)

Proposed Solution Using TSL Instruction

e Shared variables:

int lock = 0;

Pseudocode for each process: Assembly-language routines:

while (true) { enter_cr:
enter_cr(); TSL regX, |ock
do_cr(); conmpare regX with 0

) leave_cr(); if not equal
Slide 9 do_non_cr(); junp to enter_cr
} return

| eave_cr:
store 0 in |lock
return

e Does it work? Yes. (Proposed invariant: “| 0CK is 0 exactly when no
processes in their critical regions, and nonzero exactly when one process in

its critical region.”)

4)

Solution Using TSL Instruction, Continued

e Proposed invariant: “| 0cK is 0 exactly when no processes in their critical
regions, and nonzero exactly when one process in its critical region.”

e |nvariant holds.
This means first requirement is met. Others met too — well, except that it

Slide 10 might be “unfair” (some process waits forever).

e |s this a better solution? Simpler than Peterson’s algorithm, but still involves

busy-waiting, and depends on hardware features that might not be present.

CSCI 3323 September 21, 2011

Mutual Exclusion Solutions So Far

e Solutions so far have some problems: inefficient, dependent on whether

scheduler/etc. guarantees fairness.

(It's worth noting too that for the simple ones needing no special hardware —

e.g., Peterson’s algorithm — whether they work on real hardware may depend

Slide 11 on whether values “written” to memory are actually written right away or
cached.)

e Also, they're very low-level, so might be hard to use for more complicated

problems.

® S0, people have proposed various “synchronization mechanisms” . ..

Semaphores

e History — 1965 paper by Dijkstra (possibly earlier work by Iverson, of APL/J
fame).

o |dea — define semaphore ADT:

— “Value” — non-negative integer.

Slide 12 — Two operations, both atomic:

* up (V) — add one to value.
* down (P) — block until value is nonzero, then subtract one.

e Ignoring for now how to implement this — is it useful?

CSCI 3323 September 21, 2011

Mutual Exclusion Using Semaphores

e Shared variables:
senmaphore S(1);
Pseudocode for each process:

while (true) {

Slide 13 down(S);
do_cr();

up(S);
do_non_cr();

}

e Invariant: “S has value 1 exactly when no process in its critical region, 0
exactly when one process in its critical region, and never has values other
thanOor 1”

. J

Mutual Exclusion Using Semaphores, Continued

e Invariant again: “S has value 1 exactly when no process in its critical region, 0
exactly when one process in its critical region, and never has values other
thanOor1”

Obvious (?) that this means first requirement is met. Can check that others

. are met too.
Slide 14

CSCI 3323 September 21, 2011

® The textbook discusses another instruction that could be useful in
implementing some sort of locking, one that swaps the contents of a register
and a memory word in a single indivisible action. If you had this instruction
(call it SWAP) but no TSL, how would you write the ent er _Cr and

| eave_cr routines?
Slide 15

e See p. 125 of the textbook. (XCHG is what I've called SWAP)

Slide 16

