CSCI 3323 September 23, 2011

Administrivia

o Homework 2 on the Web. Due next Friday.

o Reminder: Quiz 2 Monday. Topics will come from the parts of chapter 2 we've

talked about through today.

Slide 1

Minute Essay From Last Lecture

e See slides from last time for solution. Several people got it right. Correlation

with those who are keeping up with reading?

e One person mentioned that without locking the results might be unpredictable,
another that SWAP wouldn’t be atomic. Um, hardware designers’ problem?

Slide 2 o Some people proposed solutions in which SWAP was — something other

than what it is (exchange values of register and memory location).

CSCI 3323

Slide 3

Slide 4

September 23, 2011

~N

Semaphores — Review/Recap

e Abstract data type with values that are non-negative integers, two operations
(up/down).
e Can be used to solve mutual-exclusion problem fairly nicely. How about other

problems?

Bounded Buffer Problem

e (Example of slightly more complicated synchronization needs.)

e |dea — we have a buffer of fixed size (e.g., an array), with some processes
(“producers”) putting things in and others (“consumers”) taking things out.
Synchronization:

— Only one process at a time can access buffer.
— Producers wait if buffer is full.
— Consumers wait if buffer is empty.

o Example of use: print spooling (producers are jobs that print, consumer is

printer — actually could imagine having multiple printers/consumers).

CSCI 3323 September 23, 2011

Bounded Buffer Problem, Continued

e Shared variables:

buffer B(N); // initially enpty, can hold N things

Pseudocode for producer: Pseudocode for consumer:
while (true) { while (true) {
Slide 5 item = generate(); item= get(B);
put(item B); use(item;
} }

e Synchronization requirements:
1. At most one process at a time accessing buffer.
2. Never try to get from an empty buffer or put to a full one.

3. Processes only block if they “have to”.

Bounded Buffer Problem, Continued

e \We already know how to guarantee one-at-a-time access. Can we extend
that?

e Three situations where we want a process to wait:
— Only one get/put at a time.

Slide 6 — If B is empty, consumers wait.

— If Biis full, producers wait.

CSCI 3323 September 23, 2011

Bounded Buffer Problem, Continued

e What about three semaphores?
— One to guarantee one-at-a-time access.

— One to make producers wait if B is full — so, it should be zero if B is full —
“number of empty slots"?

Slide 7 — One to make consumers wait if B is empty — so, it should be zero if B is
empty — “number of slots in use"?

Bounded Buffer Problem — Solution

e Shared variables:

buffer B(N); // enpty, capacity N
senmaphore nutex(1);
semaphore enpty(N);
semaphore full (0);

Slide 8 Pseudocode for producer: Pseudocode for consumer:

while (true) { while (true) {
item = generate(); down(full);
down(enpty); down(nut ex) ;
down(mut ex) ; item= get(B);
put(item B); up(mut ex) ;
up(nut ex) ; up(enpty);
up(full); use(item;

} }

September 23, 2011

CSCI 3323
Implementing Semaphores
o We want to define:
— Data structure to represent a semaphore.
— Functions up and down.
e Up and down should work the way we said, and we'd like to do as little
Slide 9 busy-waiting as possible.

4 _ :
Implementing Semaphores, Continued

e |dea — represent semaphore as integer plus queue of waiting processes

(represented as, e.g., process IDs).

e Then how should this work . . .

Slide 10

CSCI 3323 September 23, 2011

Implementing Semaphores, Continued

e Variables — integer val ue, queue of process IDs queue.

down() { up() {
bool zero; process p = null;
enter_cr(); enter_cr();
zero = (value == 0); if (enpty(queue))
if (!zero) val ue += 1;
value -= 1; el se
. el se p = dequeue(queue);
Slide 11 enqueue(current _process, queue); leave_cr();
l eave_cr(); if (p!=null)
if (zero) unbl ock(p); /1 mark p runnabl e
bl ock(); Il mark current process bl opked
}

e enter _cr(),l eave_cr () ? nextslide.

Implementing Semaphores, Continued

e Revised functions to enter, leave critical region:

enter_cr:
TSL registerX, |ockVar
conpare registerX with 0
if equal, jump to ok
invoke scheduler # thread yields to another thread
junp to enter_cr
ok:

Slide 12 return

| eave_cr:
store 0 in lock
return

CSCI 3323 September 23, 2011

Another Synchronization Mechanism — Monitors

e History — Hoare (1975) and Brinch Hansen (1975).
e |dea — combine synchronization and object-oriented paradigm.
® A monitor consists of
— Data for a shared object (and initial values).
Slide 13 — Procedures — only one at a time can run.
e “Condition variable” ADT allows us to wait for specified conditions (e.g., buffer
not empty):
— Value — queue of suspended processes.
— Operations:
* Wait — suspend execution (and release mutual exclusion).

* Signal — if there are processes suspended, allow one to continue. (if

not, signal is “lost”). Some choices about whether signalling process

K continues, or signalled process awakens right away.)

Bounded Buffer Problem, Revisited

e Define abounded_buf f er monitor with a queue and i nsert and
I enove procedures.

o Shared variables:

bounded_buffer B(N);
Slide 14

Pseudocode for producers: Pseudocode for consumers:

while (true) { while (true) {
item = generate(); B.remove(iten;
B.insert(item; use(item;

} }

CSCI 3323 September 23, 2011

Bounded-Buffer Monitor

e Data:

buffer B(N); // N constant, buffer enpty
int count = O;

condition full;

condition enpty;

Slide 15 e Procedures:
insert(itemitm { remove(item&tm {
if (count == if (count == 0)
wait(full); wai t (enpty);
put(itm B); itm= get(B);
count += 1; count -= 1,
signal (enpty); signal (full);
} }
e Does this work? (Yes.)
Implementing Monitors
® Requires compiler support, so more difficult to implement than (e.g.)
semaphores.
e Java’'s methods for thread synchronization are based on monitors . ..
Slide 16

CSCI 3323 September 23, 2011

Java’s Adaptation of the Monitor Idea

Data for monitor is instance variables (data for class).

e Procedures for monitor are Synchr oni zed methods/blocks — mutual

exclusion provided by implicit object lock.

e wait,notify,notifyAl |l methods.
Slide 17

No condition variables, but above methods provide more or less equivalent
functionality.

Note that the language specs for Java allow spurious wake-ups. So “best
practice” is to wai t () in a loop, re-checking the desired condition. The
textbook’s bounded-buffer code doesn’t do this (?!).

e Alleged joke (from some random Usenet person):
A man’s P should exceed his V else what's a sema for?

Do you understand this? (Remember that P is “down” and V is “up”.)

Slide 18

CSCI 3323 September 23, 2011

e It's a pun. The idea is roughly that if you never have a situation in which
you've attempted more “down” operations than “up” operations, you didn’t

need a semaphore. (Or that's what | think it means. The author might have

another idea!)

Slide 19

