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Administrivia

• Homework 2 on the Web. Due next Friday.

• Reminder: Quiz 2 Monday. Topics will come from the parts of chapter 2 we’ve

talked about through today.
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Minute Essay From Last Lecture

• See slides from last time for solution. Several people got it right. Correlation

with those who are keeping up with reading?

• One person mentioned that without locking the results might be unpredictable,

another that SWAP wouldn’t be atomic. Um, hardware designers’ problem?

• Some people proposed solutions in which SWAP was — something other

than what it is (exchange values of register and memory location).
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Semaphores — Review/Recap

• Abstract data type with values that are non-negative integers, two operations

(up/down).

• Can be used to solve mutual-exclusion problem fairly nicely. How about other

problems?
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Bounded Buffer Problem

• (Example of slightly more complicated synchronization needs.)

• Idea — we have a buffer of fixed size (e.g., an array), with some processes

(“producers”) putting things in and others (“consumers”) taking things out.

Synchronization:

– Only one process at a time can access buffer.

– Producers wait if buffer is full.

– Consumers wait if buffer is empty.

• Example of use: print spooling (producers are jobs that print, consumer is

printer — actually could imagine having multiple printers/consumers).
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Bounded Buffer Problem, Continued

• Shared variables:

buffer B(N); // initially empty, can hold N things

Pseudocode for producer:

while (true) {

item = generate();

put(item, B);

}

Pseudocode for consumer:

while (true) {

item = get(B);

use(item);

}

• Synchronization requirements:

1. At most one process at a time accessing buffer.

2. Never try to get from an empty buffer or put to a full one.

3. Processes only block if they “have to”.
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Bounded Buffer Problem, Continued

• We already know how to guarantee one-at-a-time access. Can we extend

that?

• Three situations where we want a process to wait:

– Only one get/put at a time.

– If B is empty, consumers wait.

– If B is full, producers wait.
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Bounded Buffer Problem, Continued

• What about three semaphores?

– One to guarantee one-at-a-time access.

– One to make producers wait if B is full — so, it should be zero if B is full —

“number of empty slots”?

– One to make consumers wait if B is empty — so, it should be zero if B is

empty — “number of slots in use”?

Slide 8

Bounded Buffer Problem — Solution

• Shared variables:

buffer B(N); // empty, capacity N

semaphore mutex(1);

semaphore empty(N);

semaphore full(0);

Pseudocode for producer:

while (true) {

item = generate();

down(empty);

down(mutex);

put(item, B);

up(mutex);

up(full);

}

Pseudocode for consumer:

while (true) {

down(full);

down(mutex);

item = get(B);

up(mutex);

up(empty);

use(item);

}
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Implementing Semaphores

• We want to define:

– Data structure to represent a semaphore.

– Functions up and down.

• up and down should work the way we said, and we’d like to do as little

busy-waiting as possible.
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Implementing Semaphores, Continued

• Idea — represent semaphore as integer plus queue of waiting processes

(represented as, e.g., process IDs).

• Then how should this work . . .



CSCI 3323 September 23, 2011

Slide 11

Implementing Semaphores, Continued

• Variables — integer value, queue of process IDs queue.

down() {

bool zero;

enter_cr();

zero = (value == 0);

if (!zero)

value -= 1;

else

enqueue(current_process, queue);

leave_cr();

if (zero)

block(); // mark current process blocked

}

up() {

process p = null;

enter_cr();

if (empty(queue))

value += 1;

else

p = dequeue(queue);

leave_cr();

if (p != null)

unblock(p); // mark p runnable

}

• enter cr(), leave cr()? next slide.
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Implementing Semaphores, Continued

• Revised functions to enter, leave critical region:
enter_cr:

TSL registerX, lockVar

compare registerX with 0

if equal, jump to ok

invoke scheduler # thread yields to another thread

jump to enter_cr

ok:

return

leave_cr:

store 0 in lock

return
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Another Synchronization Mechanism — Monitors

• History — Hoare (1975) and Brinch Hansen (1975).

• Idea — combine synchronization and object-oriented paradigm.

• A monitor consists of

– Data for a shared object (and initial values).

– Procedures — only one at a time can run.

• “Condition variable” ADT allows us to wait for specified conditions (e.g., buffer

not empty):

– Value — queue of suspended processes.

– Operations:

∗ Wait — suspend execution (and release mutual exclusion).

∗ Signal — if there are processes suspended, allow one to continue. (if

not, signal is “lost”). Some choices about whether signalling process

continues, or signalled process awakens right away.
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Bounded Buffer Problem, Revisited

• Define a bounded buffer monitor with a queue and insert and

remove procedures.

• Shared variables:

bounded_buffer B(N);

Pseudocode for producers:

while (true) {

item = generate();

B.insert(item);

}

Pseudocode for consumers:

while (true) {

B.remove(item);

use(item);

}
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Bounded-Buffer Monitor

• Data:

buffer B(N); // N constant, buffer empty

int count = 0;

condition full;

condition empty;

• Procedures:

insert(item itm) {

if (count == N)

wait(full);

put(itm, B);

count += 1;

signal(empty);

}

remove(item &itm) {

if (count == 0)

wait(empty);

itm = get(B);

count -= 1;

signal(full);

}

• Does this work? (Yes.)
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Implementing Monitors

• Requires compiler support, so more difficult to implement than (e.g.)

semaphores.

• Java’s methods for thread synchronization are based on monitors . . .
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Java’s Adaptation of the Monitor Idea

• Data for monitor is instance variables (data for class).

• Procedures for monitor are synchronized methods/blocks — mutual

exclusion provided by implicit object lock.

• wait, notify, notifyAll methods.

• No condition variables, but above methods provide more or less equivalent

functionality.

Note that the language specs for Java allow spurious wake-ups. So “best

practice” is to wait() in a loop, re-checking the desired condition. The

textbook’s bounded-buffer code doesn’t do this (?!).
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Minute Essay

• Alleged joke (from some random Usenet person):

A man’s P should exceed his V else what’s a sema for?

Do you understand this? (Remember that P is “down” and V is “up”.)
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Minute Essay Answer

• It’s a pun. The idea is roughly that if you never have a situation in which

you’ve attempted more “down” operations than “up” operations, you didn’t

need a semaphore. (Or that’s what I think it means. The author might have

another idea!)


