
CSCI 3323 September 26, 2011

Slide 1

Administrivia

• (None.)

Slide 2

Minute Essay From Last Lecture

• (Yes, a pun . . . )

• (Several people also commented on how it could be taken in ways they didn’t

really want to go into. Possibly!)



CSCI 3323 September 26, 2011

Slide 3

Yet Another Synchronization Mechanism — Message
Passing

• Previous synchronization mechanisms all involve shared variables; okay in

some circumstances but not very feasible in others (e.g., multiple-processor

system without shared memory).

• Idea of message passing — each process has a unique ID; two basic

operations:

– Send — specify destination ID, data to send (message).

– Receive — specify source ID, buffer to hold received data. Usually some

way to let source ID be “any”.

Slide 4

Message Passing, Continued

• Exact specifications can vary, but typical assumptions include:

– Sending a message never blocks a process (more difficult to implement

but easier to work with).

– Receiving a message blocks a process until there is a message to receive.

– All messages sent are eventually available to receive (can be non-trivial to

implement).

– Messages from process A to process B arrive in the order in which they

were sent.



CSCI 3323 September 26, 2011

Slide 5

Implementing Message Passing

• On a machine with no physically shared memory (e.g., multicomputer), must

send messages across interconnection network.

• On a machine with physically shared memory, can either copy (from address

space to address space) or somehow be clever.

Slide 6

Mutual Exclusion, Revisited

• How to solve mutual exclusion problem with message passing?

• Several approaches based on idea of a single “token”; process must “have

the token” to enter its critical region.

(I.e., desired invariant is “only one token in the system, and if a process is in

its critical region it has the token.”)

• One such approach — a “master process” that all other processes

communicate with; simple but can be a bottleneck.

• Another such approach — ring of “server processes”, one for each “client

process”, token circulates.



CSCI 3323 September 26, 2011

Slide 7

Mutual Exclusion With Message-Passing (1)

• Idea — have “master process” (centralized control).

Pseudocode for client process:
while (true) {

send(master, "request");

receive(master, &msg);

// assume "token"

do_cr();

send(master, "token");

do_non_cr();

}

Pseudocode for master process:
bool have_token = true;

queue waitQ;

while (true) {

receive(ANY, &msg);

if (msg == "request") {

if (have_token) {

send(msg.sender, "token");

have_token = false;

}

else

enqueue(sender, waitQ);

}

else { // assume "token"

if (empty(waitQ))

have_token = true;

else {

p = dequeue(waitQ);

send(p, "token");

}

}

}

Slide 8

Mutual Exclusion With Message-Passing (2)

• Idea — ring of servers, one for each client.

Pseudocode for client process:
while (true) {

send(my_server, "request");

receive(my_server, &msg);

// assume "token"

do_cr();

send(my_server, "token");

do_non_cr();

}

Pseudocode for server process:
bool need_token = false;

if (my_id == first)

send(next_server, "token");

while (true) {

receive(ANY, &msg);

if (msg == "request")

need_token = true;

else { // assume "token"

if (msg.sender == my_client) {

need_token = false;

send(next_server, "token");

}

else if (need_token)

send(my_client, "token");

else

send(next_server, "token");

}

}



CSCI 3323 September 26, 2011

Slide 9

Synchronization Mechanisms — Recap

• Low-level ways of synchronizing — using shared variables only, using TSL

instruction.

• Higher-level mechanisms — semaphores, monitors, message passing. Often

built using something lower-level.

Slide 10

Classical IPC Problems

• Literature (and textbooks) on operating systems talk about “classical

problems” of interprocess communication.

• Idea — each is an abstract/simplified version of problems o/s designers

actually need to solve. Also a good way to compare ease-of-use of various

synchronization mechanisms.

• Examples so far — mutual exclusion, bounded buffer.

• Other examples sometimes described in silly anthropomorphic terms, but

underlying problem is a simplified version of something “real”.



CSCI 3323 September 26, 2011

Slide 11

Dining Philosophers Problem

• Scenario (originally proposed by Dijkstra, 1972):

– Five philosophers sitting around a table, each alternating between thinking

and eating.

– Between every pair of philosophers, a fork; philosopher must have two

forks to eat.

– So, neighbors can’t eat at the same time, but non-neighbors can.

• Why is this interesting or important? It’s a simple example of something more

complex than mutual exclusion — multiple shared resources (forks),

processes (philosophers) must obtain two resources together. (Why five?

smallest number that’s “interesting”.)

Slide 12

Dining Philosophers — Naive Solution

• Naive approach — we have five mutual-exclusion problems to solve (one per

fork), so just solve them.

• Does this work? No — deadlock possible.



CSCI 3323 September 26, 2011

Slide 13

Dining Philosophers — Simple Solution

• Another approach — just use a solution to the mutual exclusion problem to let

only one philosopher at a time eat.

• Does this work? Well, it “works” w.r.t. meeting safety condition and no

deadlock, but it’s too restrictive.

Slide 14

Dining Philosophers — Dijkstra Solution

• Another approach — use shared variables to track state of philosophers and

semaphores to synchronize.

• I.e., variables are

– Array of five state variables (states[5]), possible values

thinking, hungry, eating. Initially all thinking.

– Semaphore mutex, initial value 1, to enforce one-at-a-time access to

states.

– Array of five semaphores self[5], initial values 0, to allow us to make

philosophers wait.

• And then the code is somewhat complex . . .



CSCI 3323 September 26, 2011

Slide 15

Dining Philosophers — Code

• Shared variables as on previous slide.

Pseudocode for philosopher i:
while (true) {

think();

down(mutex);

state[i] = hungry;

test(i);

up(mutex);

down(self[i]);

eat();

down(mutex);

state[i] = thinking;

test(right(i));

test(left(i));

up(mutex);

}

Pseudocode for function:
void test(i)

{

if ((state[left(i)] != eating) &&

(state[right(i)] != eating) &&

(state[i] == hungry))

{

state[i] = eating;

up(self[i]);

}

}

Slide 16

Dining Philosophers — Dijkstra Solution Works?

• Could there be problems with access to shared state variables?

• Do we guarantee that neighbors don’t eat at the same time?

• Do we allow non-neighbors to eat at the same time?

• Could we deadlock?

• Does a hungry philosopher always get to eat eventually?

• (To be continued . . . )



CSCI 3323 September 26, 2011

Slide 17

Minute Essay

• None — quiz.


