CSCI 3323 September 28. 2011

Administrivia

o Reminder: Homework 2 due Friday.

o (Brief review of quiz. Grades were disappointing for many. Remember that |
drop the lowest quiz score, and compared to other work these points don’t

matter much anyway.)

Slide 1
Dining Philosophers Problem — Review
e Scenario:
— Five philosophers sitting around a table, each alternating between thinking
and eating.
— Between every pair of philosophers, a fork; philosopher must have two
Slide 2 forks to eat.

— So, neighbors can't eat at the same time, but non-neighbors can.

e Why is this interesting or important? It's a simple example of something more
complex than mutual exclusion — multiple shared resources (forks),
processes (philosophers) must obtain two resources together. (Why five?
smallest number that's “interesting”.)

CSCI 3323

September 28. 2011

Slide 3

~N

Dining Philosophers — Dijkstra Solution

e Solution uses shared variables to track state of philosophers and semaphores

to synchronize:

— Array of five St at e variables (St at es[5]), possible values
t hi nki ng, hungry, eat i ng. Initially all t hi nki ng.

— Semaphore MUt eXx, initial value 1, to enforce one-at-a-time access to
st at es.

— Array of five semaphores sel f [5] , initial values 0, to allow us to make

philosophers wait.

e And then the code is somewhat complex ...

Slide 4

Dining Philosophers — Code

e Shared variables as on previous slide.

Pseudocode for philosopher 2: Pseudocode for function:
while (true) { void test(i)
think(); {
down(nut ex) ; if ((state[left(i)] != eating) &&
state[i] = hungry; (state[right(i)] != eating) &&
test(i); (state[i] == hungry))
up(nut ex) ; {
down(sel f[i]); state[i] = eating;
eat(); up(sel f[i]);
down(mut ex) ; }
state[i] = thinking; }
test(right(i));
test(left(i));
up(mut ex) ;

CSCI 3323 September 28. 2011

Dining Philosophers — Dijkstra Solution Works?

e Could there be problems with access to shared St at e variables?

e Do we guarantee that neighbors don't eat at the same time?

Do we allow non-neighbors to eat at the same time?

?
Slide 5 Could we deadlock?

Does a hungry philosopher always get to eat eventually?

Dining Philosophers — Dijkstra Solution Works?

e Could there be problems with access to shared St at e variables? No

(because all accesses are “protected” by mutual-exclusion semaphore).
o Do we guarantee that neighbors don't eat at the same time? Yes.

e Do we allow non-neighbors to eat at the same time? Yes.
Slide 6

e Could we deadlock? No.
e Does a hungry philosopher always get to eat eventually? Usually. Exception
is when two next-to-neighbors (e.g., 1 and 3) seem to conspire to starve their

common neighbor (e.g., 2).

CSCI 3323 September 28. 2011

Dining Philosophers — Chandy/Misra Solution

e Original solution allows for scenarios in which one philosopher “starves”

because its neighbors alternate eating while it remains hungry.

e Briefly, we could improve this by maintaining a notion of “priority” between
neighbors, and only allow a philosopher to eat if (1) neither neighbor is eating,
Slide 7 and (2) it doesn’t have a higher-priority neighbor that's hungry. After a

philosopher eats, it lowers its priority relative to its neighbors.

Other Classical Problems

e Readers/writers (in textbook).
e Sleeping barber, drinking philosophers, ...

e Advice — if you ever have to solve problems like this “for real”, read the

literature ...
Slide 8

CSCI 3323 September 28. 2011

-

Review — Processes and Context Switches

e Recall idea behind process abstraction — make every activity we want to

manage a “process”, and run them “concurrently”.

e Apparent concurrency provided by interleaving. (Some) true concurrency

provided by multiple cores/processors.

Slide 9 e To make this work — process table, ready/running/blocked states, context

switches.
e Context switches triggered by interrupts — /O, timer, system call, etc.

e On interrupts, interrupt handler processes interrupt, and then goes back to

some process — but which one?

4)

Which Process To Run Next?

e Deciding what process to run next — scheduler/dispatcher, using “scheduling

algorithm”.

e \When to make scheduling decisions?

— When a new process is created.

Slide 10 When a running process exits.

— When a process becomes blocked (I/0, semaphore, etc.).

After an interrupt.

e One possible decision — “go back to interrupted process” (e.g., after 1/0

interrupt).

CSCI 3323 September 28. 2011

4)

Scheduler Goals

e Importance of scheduler can vary; extremes are
— Single-user system — often only one runnable process, complicated
decision-making may not be necessary (though still might sometimes be a
good idea).
— Mainframe system — many runnable processes, queue of “batch” jobs

Slide 11 waiting, “who’s next?” an important question.
— Servers / workstations somewhere in the middle.
e First step is to be clear on goals — want to make “good decisions”, but what
does that mean? Typical goals for any system:
— Fairness — similar processes get similar service.
— Policy enforcement — “important” processes get better service.

— Balance — all parts of system (CPU, I/O devices) kept busy (assuming

there is work for them).

J

Aside — Terminology

e Discussion often in term of “jobs” — holdover from mainframe days, means

“schedulable piece of work”.

e Processes usually alternate between “CPU bursts” and 1/O, can be

categorized as “compute-bound” (“CPU-bound”) or “I/O bound”.

Slide 12 e Scheduling can be “preemptive” or “non-preemptive”.

CSCI 3323 September 28. 2011

Scheduler Goals By System Type

e For batch (non-interactive) systems, possible goals (might conflict):
— Maximize throughput — jobs per hour.
— Minimize turnaround time.
— Maximize CPU utilization.

Preemptive scheduling may not be needed.
Slide 13 P g may

e For interactive systems, possible goals:
— Minimize response time.
— Make response time proportional (to user’s perception of task difficulty).
Preemptive scheduling probably needed.
e For real-time systems, possible goals:
— Meet time constraints/deadlines.

— Behave predictably.

. J

Scheduling Algorithms

o Many, many scheduling algorithms, ranging from simple to not-so-simple.

e Point of reviewing lots of them? notice how many ways there are to solve the
same problem (“who should be next?”), strengths/weaknesses of each.

e A few this lecture, more next time ...
Slide 14

CSCI 3323 September 28. 2011

First Come, First Served (FCFS)

e Basic ideas:
— Keep a (FIFO) queue of ready processes.

— When a process starts or becomes unblocked, add it to the end of the
queue.

Slide 15 — Switch when the running process exits or blocks. (l.e., no preemption.)
— Next process is the one at the head of the queue.

e Points to consider:
— How difficult is this to understand, implement?
— What happens if a process is CPU-bound?

— Would this work for an interactive system?

(Shortest Job First (SJF))

e Basic ideas:

— Assume work is in the form of “jobs” with known running time, no blocking.

Keep a queue of these jobs.

— When a process (job) starts, add it to the queue.

Slide 16 Switch when the running process exits (i.e., no preemption).

— Next process is the one with the shortest running time.

e Points to consider:
— How difficult is this to understand, implement?
— What if we don’t know running time in advance?
— What if all jobs are not known at the start?
— Would this work for an interactive system?

— What'’s the key advantage of this algorithm?

. J

CSCI 3323 September 28. 2011

Round-Robin Scheduling

e Basic ideas:

— Keep a queue of ready processes, as before.

Define a “time slice” — maximum time a process can run at a time.

When a process starts or becomes unblocked, add it to the end of the
Slide 17 queue.

Switch when the running process uses up its time slice, or it exits or
blocks. (l.e., preemption allowed!)

Next process is the one at the head of the queue.
e Points to consider:

— How difficult is this to understand, implement?

— Would this work for an interactive system?

— How do you choose the time slice?

. J

4)

e What did you find difficult or ambiguous about the quiz? Do the questions and

intended answers make more sense now?

Slide 18

