
CSCI 3323 October 17, 2011

Slide 1

Administrivia

• (None.)

Slide 2

Memory Management — Overview

• One job of operating system is to “manage memory” — assign sections of

main memory to processes, keep track of who has what, protect processes’

memory from other processes.

• As with CPU scheduling, we’ll look at several schemes, starting with the very

simple. For each scheme, think about how well it solves the problem, how it

compares to others.

• As with processes, there’s a tradeoff between simplicity and providing a nice

abstraction to user programs.



CSCI 3323 October 17, 2011

Slide 3

Simple Schemes — No Abstraction

• Memory (a.k.a. “RAM”) can be thought of as a very long list of numbered cells

(usually bytes).

• Simplest schemes for managing it don’t try to hide that view. (Names for

these come from older edition of Tanenbaum’s book.)

Slide 4

Monoprogramming

• Idea — only one user program/process at a time, no swapping or paging.

Only decision to make is how much memory to devote to o/s itself, where to

put it.

• Consider tradeoffs — complexity versus flexibility, efficient use of memory.

• Used in very early mainframes, MS-DOS; still used in some embedded

systems.



CSCI 3323 October 17, 2011

Slide 5

Multiprogramming With Fixed Partitions

• Idea — partition memory into fixed-size “partitions” (maybe different sizes),

one for each process. Possibly also add the ability to “swap” programs (write

their memory to disk, read back in later).

• Limits “degree of multiprogramming” (how many processes can run

concurrently).

• Probably necessitates admissions scheduling — either one input queue per

partition, or one combined queue.

If one combined queue, how to choose from it when a partition becomes

available? first job that fits? largest job that fits? etc.

• Consider tradeoffs — complexity versus flexibility, efficient use of memory.

• Used in early mainframes.

Slide 6

Multiprogramming With Variable Partitions

• Idea — separate memory into partitions as before, but allow them to vary in

size and number.

I.e., “contiguous allocation” scheme.

• Like previous scheme, necessitates admissions scheduling.

• Requires that we keep track of locations and sizes of processes’ partitions,

free space. Notice potential for memory fragmentation.

• Consider tradeoffs — complexity versus flexibility, efficient use of memory.

• Used in early mainframes.



CSCI 3323 October 17, 2011

Slide 7

Program Relocation and Memory Protection

• At the machine-instruction level, references to memory are in terms of an

absolute number. Some references are made relative to the program counter,

but others may be absolute — i.e., generated when the program is translated

to machine language. Compilers/assemblers can generate these only by

making assumption about where program will reside in memory.

• In the very early days, all programs loaded at address 0, so no problem. With

monoprogramming, too, all programs reside at the same address, so no

problem.

• What happens, though, if you want to have multiple programs in memory?

compilers/assemblers can’t generate correct absolute addresses. Also, we

want to protect each process’s memory from other processes.

Slide 8

Program Relocation and Memory Protection, Continued

• One solution to relocation problem — generate, as part of the executable, a

list of locations where there’s an absolute address, and modify it as the

program is loaded into memory. (What implications does this have for being

able to do swapping?)

• One solution to the memory-protection problem — storage-protection keys

(IBM 360, an early mainframe).

• A better solution to both problems involves translating addresses “on the

fly” . . .



CSCI 3323 October 17, 2011

Slide 9

Sidebar: The “Address Space” Abstraction

• Basic idea is somewhat analogous to process abstraction, in which each

process has its own simulated CPU. Here, each process has its own

simulated memory.

• As with processes, implementing this abstraction is part of what an operating

system can/should do.

• Usually, though, o/s needs help from hardware . . .

Slide 10

Dynamic Address Translation

• Underlying idea — separate program addresses (relative to start of program’s

“address space”) from physical addresses (memory locations), and map

program addresses to physical addresses. Also try to identify out-of-bounds

addresses.

• Only practical way to implement — hardware “memory management unit” that

logically sits between the CPU and memory.

Simplifying, CPU references program addresses, MMU turns them into

physical addresses, generates interrupt if invalid.



CSCI 3323 October 17, 2011

Slide 11

A Simple MMU

• Idea — map each process’s address space to a contiguous chunk of real

memory, based on base and limit addresses (B and L):

Program address p maps to memory location B + p.

If B + p > L, invalid (out of bounds).

If B and L are different for each process — solves both problems.

• Turn this into hardware (MMU) by using base and limit registers.

• Solves both the relocation and protection problems, though may not be

especially fast.

• Consider tradeoffs — complexity versus flexibility.

• Used in some early mainframes and PCs.

Slide 12

Memory Management with Contiguous Allocation

• Simplest MMU uses two registers, base and limit. This more or less implies

that each process can have only one contiguous chunk of memory. (Notice

here the interaction between hardware design and o/s design.)

• Key issues here are keeping track of what space is used by what, and

deciding how to assign memory to processes.



CSCI 3323 October 17, 2011

Slide 13

Multiprogramming With Variable Partitions — Bitmaps

• One solution to problem of keeping track of locations/sizes of processes’

memory and free-space “chunks”.

• Idea — divide memory into “allocation units”; for each, one bit says whether

it’s free.

• Tradeoffs — simple? easy/quick to find free space of size N?

• How big should allocation units be? (What if they’re really small? really big?)

• We’ve left something out here — how to keep track of processes’ memory —

where / how big. ?

Slide 14

Multiprogramming With Variable Partitions — Free List

• Another solution to problem of keeping track of locations/sizes of processes’

memory and free-space “chunks”.

• Idea — keep linked list with one entry for each process or free-space chunk

(“hole”), sorted by address. When we allocate/free memory, possibly

split/merge entries.

• Tradeoffs — simple? space requirements compared to bitmap?



CSCI 3323 October 17, 2011

Slide 15

Multiprogramming With Variable Partitions, Continued

• Another implementation issue — how to decide, when starting a process,

which of the available free chunks to assign.

• Several strategies possible:

– First fit.

– Next fit.

– Best fit.

– Worst fit.

– Quick fit.

Slide 16

Multiprogramming with Fixed/Variable Partitions —
Recap

• Comparing the two schemes:

– Similar admission scheduling issues.

– Complexity versus flexibility, memory use also roughly similar.

• Either could be adequate for a simple batch system, maybe with the addition

of swapping. (To be continued.)



CSCI 3323 October 17, 2011

Slide 17

Minute Essay

• None — sign in.


