CSCI 3323 October 31, 2011

Administrivia

o Reminder: Homework 4 due today.

o Homework 5 on the Web; due a week from today.

Slide 1

Minute Essay From Last Lecture

(Review question.)

e Could the problem be hardware-related? disk used for paging was bad?
possible, if hardware problems led to poor performance (now they might —
some errors are handled by disk hardware, where previously it just reported

Slide 2 them).
e |Is the problem that only one drive is being used for paging? or that maybe it's

being used for something else too? again, maybe ...

e |s the problem that the page replacement algorithm can't find a free frame?

interesting, but probably not.

e Could the drive used for paging be too small? that would be a problem, but a
performance problem?

. J




CSCI 3323 October 31, 2011

4 )

Minute Essay From Last Lecture, Continued

e In my opinion simplest / most likely explanation is “thrashing” — system is so

busy paging it has no time to do useful work.

e And it can still happen, though perhaps rarely!

Slide 3

Paging — Review

e Recall basic ideas (divide address spaces and memory into fixed-size
chunks, optionally-but-usually use disk to hold what we hope are less-used

parts of processes’ address spaces).

e One key issue in making this all work acceptably is how we choose which

Slide 4 pages to keep in memory (page replacement algorithm).

e A few more things to consider ...




CSCI 3323 October 31, 2011

Demand Paging Versus Prepaging

e The purest form of paging is “demand paging” — processes are started with

no pages in memory, and pages are loaded into memory on demand only.

e An alternative is “prepaging” — try to load pages in advance of demand.
How?

Slide 5

Global Versus Local Allocation

e In deciding which page to replace, consider all pages (“global allocation”), or
just those that belong to the current process (“local allocation”)?

e Generally, global approach works better, but not all page replacement
algorithms can work that way (e.g., WSClock). Hybrid strategy — combine

Slide 6 local approach with some way to vary processes’ allocations.




CSCI 3323 October 31, 2011

Thrashing and Load Control

o What happens if combined working sets of all processes don't fit into

memory? “Thrashing”. (See minute essay from last time!)

e What to do? temporarily “swap out” some processes, or other forms of “load

control”.

Slide 7

Sharing Pages

e Shared pages can be useful, but can also present problems.

e Multiple processes running the same program is relatively easy (why?) but

has one potential downside (what?)

e UNIX f or k system call is — interesting in this context. POSIX definition
Slide 8 says that child process’s address space is basically a copy of the parent’s
address space. What's the easy-to-implement way to do this? What downside
does that have in current systems? Is there a way to reduce its impact? And

why duplicate in the first place?




CSCI 3323 October 31, 2011

Sharing Pages and f or k

e Duplicating pages is easy but inefficient, especially if the child process is
going to call eXxecVe or something similar right away. Some systems use

“copy-on-write” to improve efficiency.

e Why did the people who designed UNIX require this duplication ... Possibly
Slide 9 because it makes some things easy (such as setting up parent/child pipes)
and wasn't very costly when designed. Windows’ system call for creating

processes takes a different approach. Maybe that’s better!

Sharing Pages, Continued

e One use for shared pages is multiple processes running the same program.

e \What about sharing code at a level below whole programs (UNIX “shared
libraries”, Windows DLLs)? Seems attractive; are there potential problems?

Slide 10




CSCI 3323 October 31, 2011

Shared Libraries

e One attraction is somewhat obvious — if code for library functions (e.g.,
pri nt f)is statically linked into every program that uses it, programs need
more memory — seems wasteful if processes can share one copy of code in

memory.

Slide 11 e Another attraction is that library code can be updated independently of

programs that use it. (Is there a downside to that?)

o How to make this happen ... At link time, programs get “stub” versions of
functions. References to real versions resolved at load time. Does this remind

you of anything? and suggest a possible problem? how to fix?

Shared Libraries, Continued

e Downside of replacing shared libraries — may break applications that call

their function. UNIX provides a way around this.

e Resolving references to shared code at load time — finer-grained version of
“relocation problem”, no? and fixable by making sure library contains only

Slide 12 “position-independent code”.




CSCI 3323 October 31, 2011

Memory-Mapped File 1/0

e \Worth mentioning here that some systems also provide a mechanism (e.g.,
via system calls) to allow reading/writing whole files into/from memory. If
there’s enough memory, this could improve performance.

e Example of how this works in Linux — man page for nmap.
Slide 13

e None — quiz.

Slide 14




