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Administrivia

• (None.)
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Goals of I/O Software (Review)

• Device independence — application programs shouldn’t need to know what

kind of device.

• Uniform naming — conventions that apply to all devices (e.g., UNIX path

names, Windows drive letter and path name).

• Error handling — handle errors at as low a level as possible, retry/correct if

possible.

• “Synchronous interface to asynchronous operations.”

• Buffering.

• Device sharing / dedication.
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Layers of I/O Software

• Typically organize I/O-related parts of operating system in terms of layers —

more modular.

• Usual scheme involves four layers:

– User-space software — provide library functions for application programs

to use, perform spooling.

– Device-independent software — manage dedicated devices, do buffering,

etc.

– Device drivers — issue requests to device (or controller), queue requests,

etc.

– Interrupt handlers — process interrupt generated by device (or controller).

Slide 4

User-Space Software

• Library procedures:

– Simple wrappers — e.g., write just sets up parameters and makes

system call.

– Formatting, e.g., printf.

• Spooling:

– Actual I/O to device (e.g., printer) handled by background process.

– User programs put requests in special directory.

– Examples — printing, network requests.
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Device-Independent Software

• Uniform interface to device drivers — naming conventions, protection (who

can access what), etc.

• Buffering — simpler interface for user programs, applies to both input and

output.

• Error reporting — actual I/O errors, and also impossible requests from

programs.

• Allocating and releasing dedicated devices.

• Providing device-independent block size — more uniform interface.
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Device Drivers

• Idea is to have something that mediates between device controller and o/s —

so, need one of these for every combination of o/s and device. Often written

by device manufacturer.

• Called by other parts of o/s, we hope according to one of a small number of

standard interfaces — e.g., “block device” interface, or “character device”

interface. Communicates with device controller in its language (so to speak).

• Normally run in kernel mode. Formerly often compiled into kernel, now

usually loaded dynamically (details vary).



CSCI 3323 November 18, 2011

Slide 7

Device Drivers, Continued

• When called, must:

– Check that parameters are okay (return if not).

– Check that device is not in use (queue request if it is).

– Talk to device — may involve many commands, may require waiting (block

if so).

– Check for errors, return info to caller. If there are queued requests,

continue with next one.
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Interrupt Handlers

• Background: Something at one of the higher levels has initiated an I/O

operation and blocked itself (e.g., using a semaphore). When operation

completes, interrupt handler is run.

• Interrupt handler must:

– Save state of current process so it can be restarted.

– Deal with interrupt — acknowledge it (to interrupt controller), run interrupt

service procedure to get info from device controller’s registers/buffers.

– Unblock requesting process.

– Choose next process to run — maybe process that requested I/O, maybe

interrupted process, maybe another — and do context switch.
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I/O Software Layers — Example

• As an example, sketch simplified version of what happens when an

application program calls C-library function read. (man 2 read for its

parameters.)

• (Want to read all the details? For Linux, source (not current, but

representative) is available in /users/cs4320/LinuxSource.)
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User-Space Software Layer — C-Library read function

• Library function called from application program, so executes in “user space”.

• Sets up parameters — buffer, count, “file descriptor” constructed by previous

open (as discussed briefly in the chapter on filesystems) — and issues

read system call.

• System call generates interrupt (trap), transferring control to system read

function.

• Eventually, control returns here, after other layers have done their work.

• Returns to caller.
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Device-Independent Software Layer — System read
Function

• Invoked by interrupt handler for system calls, so executes in kernel mode.

• Checks parameters — is the file descriptor okay (not null, open for reading,

etc.)? Returns error code if necessary.

• If buffering, checks to see whether request can be obtained from buffer. If so,

copies data and returns.

• If no buffering, or not enough data in buffer, calls appropriate device driver

(file descriptor indicates which one to call, other parameters such as block

number) to fill buffer, then copies data and returns.
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Device-Driver Layer — Read Disk Block

• Contains code to be called by device-independent layer and also code to be

called by interrupt handler.

• Maintains list of read/write requests for disk (specifying block to read and

buffer).

• When called by device-independent layer, either adds request to its queue or

issues appropriate commands to controller, then blocks requesting process

(application program).

(This is where things become asynchronous.)

• When called by interrupt handler, transfers data to memory (unless done by

DMA), unblocks requesting process, and if other requests are queued up,

processes next one.
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Interrupt-Handler Layer — Read Disk Block

• Gets control when requested disk operation finishes and generates interrupt.

• Gets status and data from disk controller, unblocks waiting user process.

At this point, “call stack” (for user process) contains C library function, system

read function, and a device-driver function. We return to the device-driver

function and then unwind the stack.
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Minute Essay

• A year or two ago I argued with a Windows person about schemes for

representing devices: UNIX uses “special files”, normally in /dev but can be

anywhere, identifiable as different from normal files; Windows puts them all at

the top level, prefix similar to drive letter.

Which seems more logical to you, and why? from the standpoint of end users,

application programmers, o/s developers?


