
CSCI 3323 (Principles of Operating Systems), Fall 2012

Homework 1

Credit: 20 points.

1 Reading

Be sure you have read Chapter 1.

2 Problems

Answer the following questions. You may write out your answers by hand or using a word processor
or other program, but please submit hard copy, either in class or in my mailbox in the department
office.

1. (5 points) For each of the following instructions, say whether it should be executed only in
kernel (i.e., supervisor) mode and briefly explain why.

(Hint : In general, user programs should not be allowed to execute instructions that might
interfere with the operating system’s control of the machine. The most reasonable way to
keep them from doing so is to allow such instructions only in supervisor mode. Notice that
this question refers to machine-level instructions, not necessarily functionality. An operating
system could make the functionality of some of these instructions available to user programs
by wrapping them in system calls, and possibly requiring user programs to supply a password
to (successfully) execute these calls.)

(a) Disable all interrupts.

(b) Read the time-of-day clock.

(c) Set the time-of-day clock.

(d) Change whatever registers are used to determine which part of memory the current
process has access to.

(e) Switch from user mode to supervisor mode.

2. (5 points) Most UNIX systems include some command that allows you to trace all system
calls made by a process or command. Under Linux, this command is strace. For example,
to trace all the system calls made during execution of the command ls -l and record the
output in OUT, you would type

strace -o OUT ls -l

Your mission for this problem is to run strace for a command of your choice, capture the
output, and then describe what some of it means. Specifically, I want you to pick at least
four lines of the output using different system calls and briefly explain each of these lines,
describing in general terms what the system call is supposed to do and what the parameters
and return value mean. (So, you will turn in a printout of (part of) the output of strace

1



CSCI 3323 Homework 1 Fall 2012

with your homework. You might want to mark it up with numbers and then refer to these
numbers in your explanation.)

The man page for strace explains the general format of the output. To find out what the
individual system calls do, you will need to read their man pages. Some of these are easy
to find — e.g., the first call is usually to execve, and man execve will tell you about it.
Some are a little harder to track down — e.g., man open produces information about an open

command rather than a system call. man -k open produces a list of all man pages whose
one-line descriptions include “open”, and from this list one can perhaps guess that to look at
the desired man page you need the command man 2 open.

As an example of what I have in mind, here is a line from a trace of the command ls /users/cs4320

with commentary. (You should choose system calls other than execve.)

execve("/bin/ls", ["ls", "/users/cs4320"], [/* 82 vars */]) = 0

The call to execve creates a new process to run the command. Parameters are the command
to execute, the arguments to pass to it, and an array of environment variables (82 of them,
apparently!). The return value of 0 probably doesn’t mean anything, since the man page for
execve says that the function doesn’t return if the call is successful.

3 Programming Problems

Do the following programming problems. You will end up with at least one code file per prob-
lem. Submit your program source (and any other needed files) by sending mail to bmassing@cs.

trinity.edu, with each file as an attachment. Please use a subject line that mentions the course
number and the assignment (e.g., “csci 3323 homework 1”). You can develop your programs on
any system that provides the needed functionality, but I will test them on one of the department’s
Linux machines, so you should probably make sure they work in that environment before turning
them in.

1. (10 points) Figure 1-19 in chapter 1 of the textbook (p. 54) presents pseudocode for a simple
command shell. Your mission for this problem is to turn this into a C or C++ program that
runs on a Linux system. Your program should prompt the user for a command and command-
line arguments (the prompt can be something simple, such as “?”) and then run the given
command with the given arguments. You can require that the user give the full path for the
command (this is easier to implement and reasonable in context), and you do not have to do
sophisticated parsing of the command-line arguments (such as wildcard expansion, recognition
of environment variables, etc., etc.). Do make the program do something sensible (such as
displaying an error message) if it cannot run the command. Here is a sample execution,
terminated by control-D (“end of input” on UNIX/Linux systems):

[bmassing@xena02]$ ./simple-shell-c

? /bin/ls

Makefile simple-shell-c simple-shell-cpp strace.out strace.out.2

myecho.c simple-shell-c.c simple-shell-cpp.cpp strace.out.1

? /bin/ls -l

total 84

lrwxrwxrwx 1 bmassing bmassing 51 Aug 31 10:10 Makefile -> /users/bmassing/Home/Makefile/Makefile.c.cpp.simple

-rw------- 1 bmassing bmassing 173 Sep 13 2006 myecho.c

2



CSCI 3323 Homework 1 Fall 2012

-rwx------ 1 bmassing bmassing 9716 Aug 31 10:21 simple-shell-c

-rw------- 1 bmassing bmassing 5175 Oct 6 2006 simple-shell-c.c

-rwx------ 1 bmassing bmassing 21180 Aug 31 10:21 simple-shell-cpp

-rw------- 1 bmassing bmassing 3984 Oct 6 2006 simple-shell-cpp.cpp

-rw------- 1 bmassing bmassing 9390 Aug 31 10:16 strace.out

-rw------- 1 bmassing bmassing 7657 Sep 14 2009 strace.out.1

-rw------- 1 bmassing bmassing 9547 Sep 30 2010 strace.out.2

? /bin/ls junk

/bin/ls: cannot access junk: No such file or directory

? junk

Error executing command junk: No such file or directory

?

You can add more functionality (searching a path for the command, doing more sophisticated
parsing of inputs, exiting when the user types “exit”, etc.). If you do, describe the added
functionality in comments at the top of your code. I will give up to 5 extra-credit points for
added functionality.

Turning the pseudocode into code mostly involves defining appropriate data structures for the
variables in the pseudocode and replacing the type prompt and read command functions with
appropriate real code. Your first step should probably be to read the man page for execve

— carefully — to see what arguments it expects, and then figure out what you need to do
to turn what the user types in into suitable input to execve. Also recall (or note) that man
pages for functions tell you what if any #include directives you need to include in your code.

You will probably find that most of the code you write for this problem will be code to parse
the input (accept a line of text and break it into a command and arguments). You can do this
using C library functions, with C++ library classes (string and maybe vector), or whatever
you prefer. If you use C library functions, you will probably want to read a full line of text
using fgets and then use other functions to break up the line into a command name and
arguments. If you use the C functions and fixed-size character arrays, make the program fail
as gracefully as possible if the user supplies more input than your code has room to accept.
If you use the C++ classes, be aware that after parsing the input you may need to convert
the result to C-style strings, since that’s what execve wants.

You may be tempted to just use the C library function system. Don’t. You won’t learn what
this problem is meant to teach you, and you won’t get credit for such a solution.

Last but not least, a C tip: Get in the habit of compiling with the -Wall flag and paying
attention to warning messages. Sometimes warning messages really are just warnings you can
ignore, but often they are signs of problems you should fix. Also notice that if you compile
with -std=c99 you can use C99 features.

3


