
CSCI 3323 September 12, 2012

Slide 1

Administrivia

• I say in the syllabus that I try to respond promptly to e-mail. Exceptions are

minute essays and homeworks, which I don’t always look at right away. If you

need a quick reply, make that apparent on the subject line please!

Slide 2

Minute Essay From Last Lecture

• Difficult: Getting re-acclimated to C. (That was partly the point of the

assignment — one more opportunity to practice with the language.) Also

figuring out exactly what parameters to pass to the system-call library

functions, and doing string parsing in C.

• Interesting: How many system calls are needed for even simple programs.

(That also was partly the point of that problem.)

• (There were some other responses, but these stood out.)



CSCI 3323 September 12, 2012

Slide 3

Words of Wisdom?

• A very smart person I know once said the only interesting part of an o/s

course was concurrent algorithms (to be covered soon), and the rest is “just

details”.

A student a few years ago said “a lot of this just seems like common sense”

(once you understand the basic ideas).

Both sort of right . . .

• Goal of this course is to learn/retain basic ideas. Details may help with that —

and can be interesting in themselves — but should not be the focus.

• (Both things to keep in mind as you continue reading and we continue

discussing . . . )

Slide 4

Process Abstraction

• We want o/s to manage “things happening at the same time” — applications,

hidden tasks such as managing a device, etc.

• Key abstraction for this — “process” — program plus associated data,

including program counter.

• True concurrency (“at the same time”) requires more than one CPU (more

properly now, “more than one CPU/core”?). Can get apparent concurrency

via interleaving — model one virtual CPU per process and have the real

processor switch back and forth among them (“context switch”).

(Aside: In almost all respects, this turns out to be indistinguishable from true

concurrency. “Hm!”?)



CSCI 3323 September 12, 2012

Slide 5

Process Abstraction, Continued

• Can also associate with process an “address space” — range of addresses

the program can use. Simplifying a little, this is “virtual memory” (like the

virtual CPU) that only this process can use. More (lots more) about this later.

(Nitpick: Yes, we also want to be able to share memory among processes.

More about that later too.)

• How to map this to the real hardware? in this chapter we talk about how to

share the real CPU(s) among processes; in the next chapter we talk about

how to share the real memory.

Slide 6

Context Switches

• What is it? switch from one process to another.

• When should this happen?



CSCI 3323 September 12, 2012

Slide 7

Context Switches, Continued

• Should happen

– when a process’s “time slice” is up.

– when there’s an unrecoverable error.

– when there’s something that needs to be done right away (e.g., deal with

input/output).

– maybe other times? (when a process has to wait for something, e.g.).

All signalled by some kind of interrupt.

• Goal is to suspend work on a process such that we can later pick up exactly

where we left off. How do we make that happen?

(Think about what the hardware does when an interrupt happens, what’s

included in that “virtual CPU”.)

Slide 8

Context Switches, Continued

• On interrupt, hardware saves program counter (at least — why?), transfers

control to fixed location — which contains o/s code.

• That O/S code has to

– Save CPU state (program counter, registers, etc.) for the current process.

– Deal with interrupt (details depend on type — I/O versus timer versus . . . ).

– Restore CPU state for “next” process (previously saved), thereby restarting

it.

(“Next” process? yes, o/s might have to choose — more about that later.)



CSCI 3323 September 12, 2012

Slide 9

Process Creation and Termination

• When are processes created?

– At system startup.

– When another process makes a “create process” system call — e.g., to

start a new application.

• When are processes destroyed?

– At program exit.

– After some kinds of errors.

– When another process makes a “kill process” system call.

Slide 10

Process States

• Can think of processes as being in one of three states:

– “Running” — being executed by a CPU.

– “Blocked” — waiting for something to happen (I/O to complete, another

process to do something, etc.) and unable to do anything useful until it

does.

– “Ready” — not blocked, but waiting because all CPUs are currently

executing other processes.

• Possible transitions? Which ones require decision-making?



CSCI 3323 September 12, 2012

Slide 11

Process States, Continued

• Possible transitions (figure in textbook, p. 90):

– Running to blocked — happens when, e.g., a process makes an I/O

request and can’t continue until it’s complete.

– Blocked to ready — happens when the event the blocked process is

waiting for occurs.

– Running to ready, ready to running — needed if we want some sort of

time-sharing (give all non-blocked processes “a turn” frequently).

• Notice that moving to and from “blocked” state doesn’t involve

decision-making, but ready/running transitions do.

• The decision-maker — “scheduler” (to be discussed later). Often “running to

ready” is triggered by an interrupt (I/O, timer, etc.), and “ready to running”

involves this scheduler.

Slide 12

Implementing Processes

• Think about how you would implement this abstraction . . .

• First, you’d want a data structure to represent each process, to include —

what?



CSCI 3323 September 12, 2012

Slide 13

Implementing Processes, Continued

• Data structure to represent each process would include some way to

represent such things as:

– Process ID.

– Process state (running / ready / blocked).

– Information needed for context switch — a place to save program counter,

registers, etc.

– Other stuff as needed — e.g., a list of data structures for open files.

• Then you’d collect these into a table (or some similar structure) — “process

control table”, with individual data structures being “entries in the process

control table” or “process control blocks”.

Slide 14

Implementing Processes, Example — Linux

• Each process (“task”) is represented by a C struct containing information

similar to what we described.

• These structs are chained as a doubly-linked list; there is also a hash

table keyed by PID.

• (This is according to online information about the 2.4 kernel.)



CSCI 3323 September 12, 2012

Slide 15

Processes Versus Threads

• So far I’ve used “process” in an abstract/general way.

• In typical implementations, though, “process” is more specific — something

that has its own address space, list of open files, etc. Often these are called

“heavyweight processes”.

– Advantages — such processes don’t interfere with each other.

– Disadvantages — they can’t easily share data, switching between them is

expensive (“a lot of state” to save/restore).

• For some applications, might be nice to have something that implements the

abstract process idea but allows sharing data and faster context switching —

“threads”.

(To be continued.)

Slide 16

Minute Essay

• None — quiz.


