
CSCI 3323 September 17, 2012

Slide 1

Administrivia

• Homework 2 to be on the Web later today / early tomorrow. (I will send mail.)

Due in a week.

Slide 2

Minute Essay From Last Lecture

• Most people (but not all!) had some exposure to multithreading in PAD II.

Some are doing sockets in networking. Some have research/real-world

exposure.

• Examples (of situations needing mutual exclusion) included access to linked

lists and files.



CSCI 3323 September 17, 2012

Slide 3

Mutual Exclusion Problem — Review

• In many situations, we want only one process at a time to have access to

some shared resource.

• Generic/abstract version — multiple processes, each with a “critical region”

(“critical section”):

while (true) {

do_cr(); // must be "finite"

do_non_cr(); // need not be "finite"

}

• Goal is to add something to this code such that:

1. No more than one process at a time can be “in its critical region”.

2. No process not in its critical region can block another process.

3. No process waits forever to enter its critical region.

4. No assumptions are made about how many CPUs, their speeds.

Slide 4

Proposed Solution — Simple Lock Variable

• Shared variables:

int lock = 0;

Pseudocode for each process:

while (true) {

while (lock != 0);

lock = 1;

do_cr();

lock = 0;

do_non_cr();

}

• Does it work? reviewing the criteria . . .



CSCI 3323 September 17, 2012

Slide 5

Simple Lock Variable, Continued

• Can easily fail (1).

Slide 6

Proposed Solution — Strict Alternation

• Shared variables:

int turn = 0;

Pseudocode for process p0:

while (true) {

while (turn != 0);

do_cr();

turn = 1;

do_non_cr();

}

Pseudocode for process p1:

while (true) {

while (turn != 1);

do_cr();

turn = 0;

do_non_cr();

}

• Does it work? reviewing the criteria . . .



CSCI 3323 September 17, 2012

Slide 7

Strict Alternation, Continued

• (Yes, we’re simplifying to only two processes.)

• (1) okay.

• (2) / (3) not okay, since non-critical region need not be finite.

Slide 8

Sidebar: Reasoning about Concurrent Algorithms

• For concurrent algorithms (such as various solutions proposed for mutual

exclusion problem), testing is less helpful than for sequential algorithms.

(Why?)

• May be helpful, then, to try to think through whether they work. How? Idea of

“invariant” may be useful:

– Loosely speaking — “something about the program that’s always true”. (If

this reminds you of “loop invariants” in CSCI 1323 — good.)

– Goal is to come up with an invariant that’s easy to verify by looking at the

code and implies the property you want (here, “no more than one process

in its critical region at a time”).

– We will do this quite informally, but it can be done much more formally —

mathematical “proof of correctness” of the algorithm.



CSCI 3323 September 17, 2012

Slide 9

Strict Alternation, Revisited

• Shared variables:
int turn = 0;

Pseudocode for process p0:
while (true) {

while (turn != 0);

do_cr();

turn = 1;

do_non_cr();

}

Pseudocode for process p1:
while (true) {

while (turn != 1);

do_cr();

turn = 0;

do_non_cr();

}

• Invariant: “If pn is in its critical region, turn has value n.” (Might need to

expand definition of “in its critical region” a bit.)

Slide 10

Strict Alternation, Continued

• Invariant again: “If pn is in its critical region, turn has value n.” (Might need

to expand definition of “in its critical region” a bit.)

• How does this help? means that if p0 and p1 are both in their critical regions,

turn has two different values — impossible. So the first requirement is met.

Still have to think about the other three.



CSCI 3323 September 17, 2012

Slide 11

Proposed Solution — Peterson’s Algorithm

• Shared variables:
int turn = 0; // "who tried most recently"

bool interested0 = false, interested1 = false;

Pseudocode for process p0:
while (true) {

interested0 = true;

turn = 0;

while ((turn == 0)

&& interested1);

do_cr();

interested0 = false;

do_non_cr();

}

Pseudocode for process p1:
while (true) {

interested1 = true;

turn = 1;

while ((turn == 1)

&& interested0);

do_cr();

interested1 = false;

do_non_cr();

}

• Does it work? Yes.

Slide 12

Peterson’s Algorithm, Continued

• Intuitive idea — p0 can only start do cr() if either p1 isn’t interested, or p1

is interested but it’s p0’s turn; turn “breaks ties”.

• Semi-formal proof using invariants is a bit tricky. Proposed invariant: “If p0 is

in its critical region, interested0 is true and either interested1 is

false or turn is 1”; similarly for p1.

If we can show this is an invariant, first requirement is met. Others are too.

But a fiddly detail — the invariant can be false if p0 is in its critical region

when p1 executes the lines interested1 = true; turn = 1;.

See next slide for revision.



CSCI 3323 September 17, 2012

Slide 13

Peterson’s Algorithm, Continued

• Shared variables:
int turn = 0; // "who tried most recently"

bool interested0 = false, interested1 = false;

Pseudocode for process p0:
while (true) {

interested0 = true; // L1

turn = 0; // L2

while ((turn == 0)

&& interested1);

do_cr();

interested0 = false;

do_non_cr();

}

Pseudocode for process p1:
while (true) {

interested1 = true; // L1

turn = 1; // L2

while ((turn == 1)

&& interested0);

do_cr();

interested1 = false;

do_non_cr();

}

• Revised invariant: “If p0 is in its critical region, interested0 is true and

one of the following is true: interested1 is false, turn is 1, or p1 is

between L1 and L2”, and similarly for p1. Ugly but works.

Slide 14

Peterson’s Algorithm, Continued

• Requires essentially no hardware support (aside from “no two simultaneous

writes to memory location X” — fairly safe assumption as long as X is a single

“word”). Can be extended to more than two processes.

• But complicated and not very efficient.



CSCI 3323 September 17, 2012

Slide 15

Sidebar: TSL Instruction

• A key problem in concurrent algorithms is the idea of “atomicity” (operations

guaranteed to execute without interference from another CPU/process).

Hardware can provide some help with this.

• E.g., “test and set lock” (TSL) instruction:

TSL registerX, lockVar

(1) copies lockVar to registerX and (2) sets lockVar to non-zero,

all as one atomic operation.

How to make this work is the hardware designers’ problem!

Slide 16

Proposed Solution Using TSL Instruction

• Shared variables:
int lock = 0;

Pseudocode for each process:
while (true) {

enter_cr();

do_cr();

leave_cr();

do_non_cr();

}

Assembly-language routines:
enter_cr:

TSL regX, lock

compare regX with 0

if not equal

jump to enter_cr

return

leave_cr:

store 0 in lock

return

• Does it work? Yes. (Proposed invariant: “lock is 0 exactly when no

processes in their critical regions, and nonzero exactly when one process in

its critical region.”)



CSCI 3323 September 17, 2012

Slide 17

Solution Using TSL Instruction, Continued

• Proposed invariant: “lock is 0 exactly when no processes in their critical

regions, and nonzero exactly when one process in its critical region.”

• Invariant holds.

This means first requirement is met. Others met too — well, except that it

might be “unfair” (some process waits forever).

• Is this a better solution? Simpler than Peterson’s algorithm, but still involves

busy-waiting, and depends on hardware features that might not be present.

Slide 18

Mutual Exclusion Solutions So Far

• Solutions so far have some problems: inefficient, dependent on whether

scheduler/etc. guarantees fairness.

(It’s worth noting too that for the simple ones needing no special hardware —

e.g., Peterson’s algorithm — whether they work on real hardware may depend

on whether values “written” to memory are actually written right away or

cached.)

• Also, they’re very low-level, so might be hard to use for more complicated

problems.

• So, people have proposed various “synchronization mechanisms” . . . (To be

continued next time.)



CSCI 3323 September 17, 2012

Slide 19

Sidebar of Sidebar: Reasoning About Loops

• (I probably won’t have time to through these slides in much detail in class but

will leave them here for anyone interested.)

• Usually want to prove two things — the loop eventually terminates, and it

establishes some desired postcondition.

• Proving that it terminates — define a metric that you know decreases by

some minimum amount with every trip through the loop, and when it goes

below some threshold value, the loop ends.

• Proving that it establishes the postcondition — use a loop invariant.

• (I say “prove” here, since this can be done very rigorously, but in practical

situations an informal version is usually good enough.)

Slide 20

Reasoning About Loops, Continued

• What’s a loop invariant? in the context of reasoning about programs, it’s a

predicate (boolean expression using program variables) that

– is true before the loop starts, and

– if true before a trip through the loop, with the loop condition true, is also

true after the trip through the loop.

If you can prove that a particular predicate is a loop invariant, after the loop

exits, you know it’s still true, and the loop condition is not. With a well-chosen

invariant, this is enough to prove useful things.

• (Might be worth noting that compiler writers have a different definition —

some computation that can be moved outside the loop.)



CSCI 3323 September 17, 2012

Slide 21

Reasoning About Loops, Simple Example

• Loop to compute sum of elements of array a of size n:

i = 0; sum = 0;

while (i != n) {

sum = sum + a[i];

i = i + 1;

}

At end, sum is sum of elements of a.

• Does this work? well, you probably believe it does, but you could prove it

using the invariant:

sum is the sum of a[0] through a[i-1]

Slide 22

Reasoning About Loops, Example

• Euclid’s algorithm for computing greatest common divisor of nonnegative

integers a and b:

i = a; j = b;

while (j != 0) {

q = i / j; r = i % j;

i = j; j = r;

}

At end, i = gcd(a, b).

• Does this work? work through some examples and gain some confidence —

or prove using invariant:

gcd(i, j) = gcd(a, b)

and the math fact gcd(n, 0) = n



CSCI 3323 September 17, 2012

Slide 23

Minute Essay

• Anything today (or Friday) that was particularly unclear, or that you want to

know more about?


