
CSCI 3323 September 21, 2012

Slide 1

Administrivia

• Reminder: Quiz 2 Monday. Topics will come from the parts of chapter 2 we’ve

talked about through today.

Slide 2

Minute Essay From Last Lecture

• Yes, a pun . . .

• (A few people got the point. No one was very entertained. Oh well! One

person looked up the Dutch words that P and V stand for.)



CSCI 3323 September 21, 2012

Slide 3

Synchronization Mechanisms — Review/Recap

• Synchronization using only shared variables seems to be tedious and

inefficient.

• “Synchronization mechanisms” are more-abstract ways of coordinating what

processes do. A key point is providing something that potentially makes a

process wait.

Slide 4

Another Synchronization Mechanism — Monitors

• History — Hoare (1975) and Brinch Hansen (1975).

• Idea — combine synchronization and object-oriented paradigm.

• A monitor consists of

– Data for a shared object (and initial values).

– Procedures — only one at a time can run.

• “Condition variable” ADT allows us to wait for specified conditions (e.g., buffer

not empty):

– Value — queue of suspended processes.

– Operations:

∗ Wait — suspend execution (and release mutual exclusion).

∗ Signal — if there are processes suspended, allow one to continue. (if

not, signal is “lost”). Some choices about whether signalling process

continues, or signalled process awakens right away.



CSCI 3323 September 21, 2012

Slide 5

Bounded Buffer Problem, Revisited

• Define a bounded buffer monitor with a queue and insert and

remove procedures.

• Shared variables:

bounded_buffer B(N);

Pseudocode for producers:

while (true) {

item = generate();

B.insert(item);

}

Pseudocode for consumers:

while (true) {

B.remove(item);

use(item);

}

Slide 6

Bounded-Buffer Monitor

• Data:

buffer B(N); // N constant, buffer empty

int count = 0;

condition full;

condition empty;

• Procedures:

insert(item itm) {

if (count == N)

wait(full);

put(itm, B);

count += 1;

signal(empty);

}

remove(item &itm) {

if (count == 0)

wait(empty);

itm = get(B);

count -= 1;

signal(full);

}

• Does this work? (Yes.)



CSCI 3323 September 21, 2012

Slide 7

Implementing Monitors

• Requires compiler support, so more difficult to implement than (e.g.)

semaphores.

• Java’s methods for thread synchronization are based on monitors . . .

Slide 8

Java’s Adaptation of the Monitor Idea

• Data for monitor is instance variables (data for class).

• Procedures for monitor are synchronized methods/blocks — mutual

exclusion provided by implicit object lock.

• wait, notify, notifyAll methods.

• No condition variables, but above methods provide more or less equivalent

functionality.

Note that the language specs for Java allow spurious wake-ups. So “best

practice” is to wait() in a loop, re-checking the desired condition. The

textbook’s bounded-buffer code doesn’t do this (?!).



CSCI 3323 September 21, 2012

Slide 9

Yet Another Synchronization Mechanism — Message
Passing

• Previous synchronization mechanisms all involve shared variables; okay in

some circumstances but not very feasible in others (e.g., multiple-processor

system without shared memory).

• Idea of message passing — each process has a unique ID; two basic

operations:

– Send — specify destination ID, data to send (message).

– Receive — specify source ID, buffer to hold received data. Usually some

way to let source ID be “any”.

Slide 10

Message Passing, Continued

• Exact specifications can vary, but typical assumptions include:

– Sending a message never blocks a process (more difficult to implement

but easier to work with).

– Receiving a message blocks a process until there is a message to receive.

– All messages sent are eventually available to receive (can be non-trivial to

implement).

– Messages from process A to process B arrive in the order in which they

were sent.



CSCI 3323 September 21, 2012

Slide 11

Implementing Message Passing

• On a machine with no physically shared memory (e.g., multicomputer), must

send messages across interconnection network.

• On a machine with physically shared memory, can either copy (from address

space to address space) or somehow be clever.

Slide 12

Mutual Exclusion, Revisited

• How to solve mutual exclusion problem with message passing?

• Several approaches based on idea of a single “token”; process must “have

the token” to enter its critical region.

(I.e., desired invariant is “only one token in the system, and if a process is in

its critical region it has the token.”)

• One such approach — a “master process” that all other processes

communicate with; simple but can be a bottleneck.

• Another such approach — ring of “server processes”, one for each “client

process”, token circulates.



CSCI 3323 September 21, 2012

Slide 13

Mutual Exclusion With Message-Passing (1)

• Idea — have “master process” (centralized control).

Pseudocode for client process:
while (true) {

send(master, "request");

receive(master, &msg);

// assume "token"

do_cr();

send(master, "token");

do_non_cr();

}

Pseudocode for master process:
bool have_token = true;

queue waitQ;

while (true) {

receive(ANY, &msg);

if (msg == "request") {

if (have_token) {

send(msg.sender, "token");

have_token = false;

}

else

enqueue(sender, waitQ);

}

else { // assume "token"

if (empty(waitQ))

have_token = true;

else {

p = dequeue(waitQ);

send(p, "token");

}

}

}

Slide 14

Mutual Exclusion With Message-Passing (2)

• Idea — ring of servers, one for each client.

Pseudocode for client process:
while (true) {

send(my_server, "request");

receive(my_server, &msg);

// assume "token"

do_cr();

send(my_server, "token");

do_non_cr();

}

Pseudocode for server process:
bool need_token = false;

if (my_id == first)

send(next_server, "token");

while (true) {

receive(ANY, &msg);

if (msg == "request")

need_token = true;

else { // assume "token"

if (msg.sender == my_client) {

need_token = false;

send(next_server, "token");

}

else if (need_token)

send(my_client, "token");

else

send(next_server, "token");

}

}



CSCI 3323 September 21, 2012

Slide 15

Synchronization Mechanisms — Recap

• Low-level ways of synchronizing — using shared variables only, using TSL

instruction. All seem tedious and inefficient.

• “Synchronization mechanisms” are more-abstract ways of coordinating what

processes do. A key point is providing something that potentially makes a

process wait. Examples include semaphores, monitors, message passing.

Often built using something lower-level.

Slide 16

Minute Essay

• TBA


