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Administrivia

• Reminder: Quiz 2 Monday. Topics will come from the parts of chapter 2 we’ve

talked about through today.
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Minute Essay From Last Lecture

• Yes, a pun . . .

• (A few people got the point. No one was very entertained. Oh well! One

person looked up the Dutch words that P and V stand for.)
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Synchronization Mechanisms — Review/Recap

• Synchronization using only shared variables seems to be tedious and

inefficient.

• “Synchronization mechanisms” are more-abstract ways of coordinating what

processes do. A key point is providing something that potentially makes a

process wait.
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Another Synchronization Mechanism — Monitors

• History — Hoare (1975) and Brinch Hansen (1975).

• Idea — combine synchronization and object-oriented paradigm.

• A monitor consists of

– Data for a shared object (and initial values).

– Procedures — only one at a time can run.

• “Condition variable” ADT allows us to wait for specified conditions (e.g., buffer

not empty):

– Value — queue of suspended processes.

– Operations:

∗ Wait — suspend execution (and release mutual exclusion).

∗ Signal — if there are processes suspended, allow one to continue. (if

not, signal is “lost”). Some choices about whether signalling process

continues, or signalled process awakens right away.
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Bounded Buffer Problem, Revisited

• Define a bounded buffer monitor with a queue and insert and

remove procedures.

• Shared variables:

bounded_buffer B(N);

Pseudocode for producers:

while (true) {

item = generate();

B.insert(item);

}

Pseudocode for consumers:

while (true) {

B.remove(item);

use(item);

}
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Bounded-Buffer Monitor

• Data:

buffer B(N); // N constant, buffer empty

int count = 0;

condition full;

condition empty;

• Procedures:

insert(item itm) {

if (count == N)

wait(full);

put(itm, B);

count += 1;

signal(empty);

}

remove(item &itm) {

if (count == 0)

wait(empty);

itm = get(B);

count -= 1;

signal(full);

}

• Does this work? (Yes.)
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Implementing Monitors

• Requires compiler support, so more difficult to implement than (e.g.)

semaphores.

• Java’s methods for thread synchronization are based on monitors . . .
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Java’s Adaptation of the Monitor Idea

• Data for monitor is instance variables (data for class).

• Procedures for monitor are synchronized methods/blocks — mutual

exclusion provided by implicit object lock.

• wait, notify, notifyAll methods.

• No condition variables, but above methods provide more or less equivalent

functionality.

Note that the language specs for Java allow spurious wake-ups. So “best

practice” is to wait() in a loop, re-checking the desired condition. The

textbook’s bounded-buffer code doesn’t do this (?!).
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Yet Another Synchronization Mechanism — Message
Passing

• Previous synchronization mechanisms all involve shared variables; okay in

some circumstances but not very feasible in others (e.g., multiple-processor

system without shared memory).

• Idea of message passing — each process has a unique ID; two basic

operations:

– Send — specify destination ID, data to send (message).

– Receive — specify source ID, buffer to hold received data. Usually some

way to let source ID be “any”.
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Message Passing, Continued

• Exact specifications can vary, but typical assumptions include:

– Sending a message never blocks a process (more difficult to implement

but easier to work with).

– Receiving a message blocks a process until there is a message to receive.

– All messages sent are eventually available to receive (can be non-trivial to

implement).

– Messages from process A to process B arrive in the order in which they

were sent.
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Implementing Message Passing

• On a machine with no physically shared memory (e.g., multicomputer), must

send messages across interconnection network.

• On a machine with physically shared memory, can either copy (from address

space to address space) or somehow be clever.
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Mutual Exclusion, Revisited

• How to solve mutual exclusion problem with message passing?

• Several approaches based on idea of a single “token”; process must “have

the token” to enter its critical region.

(I.e., desired invariant is “only one token in the system, and if a process is in

its critical region it has the token.”)

• One such approach — a “master process” that all other processes

communicate with; simple but can be a bottleneck.

• Another such approach — ring of “server processes”, one for each “client

process”, token circulates.
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Mutual Exclusion With Message-Passing (1)

• Idea — have “master process” (centralized control).

Pseudocode for client process:
while (true) {

send(master, "request");

receive(master, &msg);

// assume "token"

do_cr();

send(master, "token");

do_non_cr();

}

Pseudocode for master process:
bool have_token = true;

queue waitQ;

while (true) {

receive(ANY, &msg);

if (msg == "request") {

if (have_token) {

send(msg.sender, "token");

have_token = false;

}

else

enqueue(sender, waitQ);

}

else { // assume "token"

if (empty(waitQ))

have_token = true;

else {

p = dequeue(waitQ);

send(p, "token");

}

}

}
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Mutual Exclusion With Message-Passing (2)

• Idea — ring of servers, one for each client.

Pseudocode for client process:
while (true) {

send(my_server, "request");

receive(my_server, &msg);

// assume "token"

do_cr();

send(my_server, "token");

do_non_cr();

}

Pseudocode for server process:
bool need_token = false;

if (my_id == first)

send(next_server, "token");

while (true) {

receive(ANY, &msg);

if (msg == "request")

need_token = true;

else { // assume "token"

if (msg.sender == my_client) {

need_token = false;

send(next_server, "token");

}

else if (need_token)

send(my_client, "token");

else

send(next_server, "token");

}

}
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Synchronization Mechanisms — Recap

• Low-level ways of synchronizing — using shared variables only, using TSL

instruction. All seem tedious and inefficient.

• “Synchronization mechanisms” are more-abstract ways of coordinating what

processes do. A key point is providing something that potentially makes a

process wait. Examples include semaphores, monitors, message passing.

Often built using something lower-level.

Slide 16

Minute Essay

• TBA


