
CSCI 3323 October 19, 2012

Slide 1

Administrivia

• Homework 4 correction: Programming problem will be optional; up to 5

extra-credit points.

Slide 2

Paging — Recap

• Idea — divide both address spaces and memory into fixed-size blocks

(“pages” and “page frames”), allow non-contiguous allocation.

• Makes for a much more flexible system but at a cost in complexity — keeping

track of a process’s memory requires a “page table” to be used by both

hardware (MMU) and software (O/S).



CSCI 3323 October 19, 2012

Slide 3

Sidebar: Memory Management Within Processes

• What if we don’t know before the program starts how much memory it will

want? with very old languages, maybe not an issue, but with more modern

ones it is.

I.e., we might want to manage memory within a process’s “address space”

(range of possible program/virtual addresses).

• Typical scheme involves

– Fixed-size allocation for code and any static data.

– Two variable-size pieces (“heap” and “stack”) for dynamically allocated

data.

– Notice — combined sizes of these pieces might be less than size of

address space, maybe a lot less.

Slide 4

Paging, Continued — Performance / Large Address
Spaces

• Even with good choice of page size, serious performance implications —

page table can still be big, and every memory reference involves page-table

access — how to make this feasible/fast?

• (Remember that the MMU is hardware, and a bit about registers — local to

the CPU, faster to access than memory but limited in number, can be

general-purpose or dedicated to a particular use (e.g., the program counter).)



CSCI 3323 October 19, 2012

Slide 5

Page Tables — Performance Issues

• One possibility is to keep the whole page table for the current process in

registers. Could possibly use general-purpose registers for this but likely

would not. Should make for fast translation of addresses, but — is this really

feasible for a large table? and what about context switches?

• Another possibility is to keep the process table in memory and just have one

register (probably a special-purpose one) point to it. Cost/benefit tradeoffs

here seem like the opposite of the first scheme, no?

The big downside is slow lookup, though, and that can be improved with a

“translation lookaside buffer” (TLB) — special-purpose cache.

Slide 6

Large Address Spaces

• Clearly page tables can be big. How to make this feasible?

• One approach — multilevel page tables.

• Another approach — inverted page tables (one entry per page frame).



CSCI 3323 October 19, 2012

Slide 7

Paging and Virtual Memory

• Idea — if we don’t have room for all pages of all processes in main memory,

keep some on disk (“pretend we have more memory than we really do”).

• Or a simpler view: All address spaces live in secondary memory / swap space

/ backing store, and we “page in” as needed (demand paging).

• (Aside: Why are we even bothering? Can’t the processor(s) access disk?

Yes, but . . . )

• Making this work requires help from both hardware (MMU) and software

(operating system).

Slide 8

Page Fault Interrupts

• We said MMU should generate a “page fault” interrupt for a page that’s not

present in real memory. What happens then? It’s an interrupt, so . . .

• Control goes to an interrupt handler. What should it do? (Are there different

possibilities for what caused the page faults?)



CSCI 3323 October 19, 2012

Slide 9

Page Fault Interrupts, Continued

• One possible cause — an address that’s not valid. You know (sort of) what

happens then . . .

• Another cause — an address that’s valid, but the page is on disk rather than

in real memory. So — do I/O to read it in. Where to put it? If there’s a free

page frame, choice is easy. What if there’s not?

Slide 10

Finding A Free Frame — Page Replacement Algorithms

• Processing a page fault can involve finding a free page frame. Would be easy

if the current set of processes aren’t taking up all of main memory, but what if

they are? Must steal a page frame from someone. How to choose one?

• Several ways to make choice (as with CPU scheduling) — “page replacement

algorithms”.

• “Good” algorithms are those that result in few page faults. (What happens if

there are many page faults?)

• Choice usually constrained by what MMU provides (though that is influenced

by what would help o/s designers).

• Many choices. (To be continued.)



CSCI 3323 October 19, 2012

Slide 11

Minute Essay

• Why is a “good” page replacement algorithm one that generates as few page

faults as possible? (I.e., what happens if there are a lot of page faults?)

Slide 12

Minute Essay Answer

• The usual result of lots of page faults is that the computer spends more time

doing “paging” (moving data back and forth between memory and disk),

sometimes to the point where it isn’t doing much else.


