
CSCI 3323 October 26, 2012

Slide 1

Administrivia

• Reminder: Homework 4 due today.

Slide 2

Minute Essay From Last Lecture

• Some answers about right, some — not so much. One person mentioned

using an SSD drive. That would help with the symptom but not with the

underlying problem, no?



CSCI 3323 October 26, 2012

Slide 3

Paging — Review

• Recall basic ideas (divide address spaces and memory into fixed-size

chunks, optionally-but-usually use disk to hold what we hope are less-used

parts of processes’ address spaces).

• One key issue in making this all work acceptably is how we choose which

pages to keep in memory (page replacement algorithm).

• A few more things to consider . . .

Slide 4

Demand Paging Versus Prepaging

• The purest form of paging is “demand paging” — processes are started with

no pages in memory, and pages are loaded into memory on demand only.

• An alternative is “prepaging” — try to load pages in advance of demand.

How?



CSCI 3323 October 26, 2012

Slide 5

Global Versus Local Allocation

• In deciding which page to replace, consider all pages (“global allocation”), or

just those that belong to the current process (“local allocation”)?

• Generally, global approach works better, but not all page replacement

algorithms can work that way (e.g., WSClock). Hybrid strategy — combine

local approach with some way to vary processes’ allocations.

Slide 6

Thrashing and Load Control

• What happens if combined working sets of all processes don’t fit into

memory? “Thrashing”. (See minute essay from last time!)

• What to do? temporarily “swap out” some processes, or other forms of “load

control”.



CSCI 3323 October 26, 2012

Slide 7

Sharing Pages

• Shared pages can be useful, but can also present problems.

• Multiple processes running the same program is relatively easy (why?) but

has one potential downside (what?)

• UNIX fork system call is — interesting in this context. POSIX definition

says that child process’s address space is basically a copy of the parent’s

address space. What’s the easy-to-implement way to do this? What downside

does that have in current systems? Is there a way to reduce its impact? And

why duplicate in the first place?

Slide 8

Sharing Pages and fork

• Duplicating pages is easy but inefficient, especially if the child process is

going to call execve or something similar right away. Some systems use

“copy-on-write” to improve efficiency.

• Why did the people who designed UNIX require this duplication . . . Possibly

because it makes some things easy (such as setting up parent/child pipes)

and wasn’t very costly when designed. Windows’ system call for creating

processes takes a different approach. Maybe that’s better!



CSCI 3323 October 26, 2012

Slide 9

Sharing Pages, Continued

• One use for shared pages is multiple processes running the same program.

• What about sharing code at a level below whole programs (UNIX “shared

libraries”, Windows DLLs)? Seems attractive; are there potential problems?

Slide 10

Shared Libraries

• One attraction is somewhat obvious — if code for library functions (e.g.,

printf) is statically linked into every program that uses it, programs need

more memory — seems wasteful if processes can share one copy of code in

memory.

• Another attraction is that library code can be updated independently of

programs that use it. (Is there a downside to that?)

• How to make this happen . . . At link time, programs get “stub” versions of

functions. References to real versions resolved at load time. Does this remind

you of anything? and suggest a possible problem? how to fix?



CSCI 3323 October 26, 2012

Slide 11

Shared Libraries, Continued

• Downside of replacing shared libraries — may break applications that call

their function. UNIX provides a way around this.

• Resolving references to shared code at load time — finer-grained version of

“relocation problem”, no? and fixable by making sure library contains only

“position-independent code”.

Slide 12

Memory-Mapped File I/O

• Worth mentioning here that some systems also provide a mechanism (e.g.,

via system calls) to allow reading/writing whole files into/from memory. If

there’s enough memory, this could improve performance.

• Example of how this works in Linux — man page for mmap.



CSCI 3323 October 26, 2012

Slide 13

Minute Essay

• None — quiz.


