
CSCI 3323 November 5, 2012

Slide 1

Administrivia

• Reminder: Homework 5 due today.

• Reminder: Quiz 4 Wednesday.

Slide 2

Minute Essay From Last Lecture

• Contiguous-allocation schemes for files could make sense if files don’t

change size, or for write-once media.

• Might also be useful for very simple systems? since it was useful when all

systems were simpler?



CSCI 3323 November 5, 2012

Slide 3

Filesystems — Quotas

• Why have quotas? Disk space is cheap, right? yes, but more space used

means more to back up, and on multi-user systems there are fairness issues,

and the possibility that one careless user will affect others.

• Implementation involves keeping track, for each user, of space used versus

space allowed. Must be updated every time a file is changed/created/deleted.

Some systems allow “grace period”, but eventually all will disallow, for user

over quota, creation of new files or expansion of existing files.

Slide 4

Filesystem Reliability — Backups

• Why do backups? sometimes data is more valuable than physical medium,

and might need to

– Recover from disaster (rare these days, but possible).

– Recover from stupidity (less rare – hence “recycle bin” idea).

• Many issues involved — which files to back up, how to store backup media,

etc., etc. — see textbook.



CSCI 3323 November 5, 2012

Slide 5

Filesystem Reliability — Consistency Checks

• Can easily happen that true state of filesystem is represented by a

combination of what’s on disk and what’s in memory — a problem if shutdown

is not orderly.

• Solution is a “fix-up” program (UNIX fsck, Windows scandisk). Kinds of

checking we can do:

– Consistency check: For each block, how many files does it appear in

(treating free list as a file)? If other than 1, problem — fix it as best we can.

– File consistency check: For each file, count number of links to it and

compare with number in its i-node. If not equal, change i-node.

– Etc., etc. — see text.

Slide 6

Journaling Filesystems — Overview

• As we’ll discuss later (and as you may know!) — o/s sometimes doesn’t

perform “write to disk” operations right away (caching).

• One result is likely improved performance. Another is potential filesystem

inconsistency — operations such as “move a block from the free list to a file”

are no longer atomic.

• Idea of journaling filesystem — do something so we can regard updates to

filesystem as atomic.

• To say it another way — record changes-in-progress in log, when complete

mark them “done”.



CSCI 3323 November 5, 2012

Slide 7

Journaling Filesystems, Continued

• Can record “data”, “metadata” (directory info, free list, etc.), or both.

• “Undo logging” versus “redo logging”:

– Undo logging: First copy old data to log, then write new data (possibly

many blocks) to disk. If something goes wrong during update, “roll back”

by copying old data from log.

– Redo logging: First write new data to log (i.e., record changes we’re going

to make), then write new data to disk. If something goes wrong during

update, complete the update using data in log.

• A key benefit — after a system crash, we should only have to look at the log

for incomplete updates, rather than doing a full filesystem consistency check.

Slide 8

Journaling Filesystems Versus Log-Structured
Filesystems

• Log-structured filesystem — everything is written to log, and only to log.

Seems like an interesting idea, but tough to implement on real systems.

• Journaling filesystem — log contains only recent and pending updates.



CSCI 3323 November 5, 2012

Slide 9

Virtual File Systems

• Apparently many possibilities for implementing filesystem abstraction, with the

usual tradeoffs. Do we have to choose one, or can different types coexist?

The latter . . .

• In Windows, having different filesystems on different logical drives is

managed via drive letters.

• In UNIX, current approach is usually a “virtual file system” — basically, an

extra layer of abstraction (remember the adage about how that can solve any

programming problem).

Slide 10

Filesystem Performance

• Access to disk data is much slower than access to memory — seek time plus

rotational delay plus transfer time.

• So, file systems include various optimizations . . .



CSCI 3323 November 5, 2012

Slide 11

Improving Filesystem Performance — Caching

• Idea — keep some disk blocks in memory; keep track of which ones are there

using hash table (base hash code on device and disk address).

• When cache is full and we must load a new block, which one to replace?

Could use algorithms based on page replacement algorithms, could even do

LRU accurately — though that might be wrong (e.g., want to keep data blocks

being filled).

• When should blocks be written out?

– If block is needed for file system consistency, could write out right away. If

block hasn’t been written out in a while, also could write out, to avoid data

loss in long-running program.

– Two approaches: “Write-through cache” (Windows) — always write out

modified blocks right away. Periodic “sync” to write out (UNIX).

Slide 12

Improving Filesystem Performance — Block
Read-Ahead

• Idea — if file is being read sequentially, can read some blocks “ahead”. (Of

course, doesn’t help if file is being read non-sequentially. Decide based on

recent access patterns.)



CSCI 3323 November 5, 2012

Slide 13

Improving Filesystem Performance — Reducing Disk
Arm Motion

• Group blocks for each file together — easier if bitmap is used to keep track of

free space. If not grouped together — “disk fragmentation” may affect

performance.

• If i-nodes are being used, place them so they’re fast to get to (and so maybe

we can read an i-node and associated file block together).

Slide 14

Disk Fragmentation

• Idea — if blocks that make up a file are (mostly) contiguous, faster to read

them all. If not, “disk fragmentation”.

• How likely is disk fragmentation? Depends on filesystem, strategy for

allocating space for files.

• “Defragmenter” utility can be run to correct it. Windows comes with one.

Linux doesn’t. The claim is that UNIX and Linux filesystems typically don’t

become fragmented unless the disk is close to full.



CSCI 3323 November 5, 2012

Slide 15

Example Filesystem — Unix V7

• Filename restriction — each part of path name at most 14 characters.

• So, directory entry is just 14-byte name and i-node number.

• I-nodes are all stored in a contiguous array at the start of the file system (right

after boot block and a “superblock” containing additional parameters).

• What’s in each i-node? attributes (permission bits, numeric owner and group

ID, timestamps, links count) and list of blocks — last is pointer to more blocks.

• To find a file:

– Start with root directory — its i-node is in a known place.

– Scan directory for first part of path, get its i-node, read it, scan for next part

of path, etc.

– Relative path names are handled by including “.” and “..” in each directory,

so no special code needed.

Slide 16

UNIX Filesystems — Hard Links versus Symbolic Links

• As mentioned previously, many filesystems provide a mechanism for creating

not-strictly-hierarchical relationships among files/folders. UNIX typically has

two:

– “Hard” links allow multiple directory entries to point to the same i-node.

– “Soft” (symbolic) links are a special type of file containing a pathname

(absolute or relative).

• (Why two? Good question. Compare and contrast . . . )



CSCI 3323 November 5, 2012

Slide 17

Minute Essay

• List as many reasons as you can think of why there seem to be so many

different kinds of filesystems.

• This wraps up the planned lectures on filesystems. Anything you’d like to hear

more about?

Slide 18

Minute Essay Answer

• (I was looking for some discussion of how different users/systems have

different requirements — that is, one size(?) doesn’t fit all — and also perhaps

for a mention of how people like to experiment/tinker with different ideas.)


