CSCI 3323 (Principles of Operating Systems), Fall 2013

Homework 3

Credit: 10 points.

1 Reading

Be sure you have read Chapter 2, sections 2.1 through 2.3 and 2.5

2 Problems

Answer the following questions. You may write out your answers by hand or using a word processor
or other program, but please submit hard copy, either in class or in my mailbox in the department
office.

1. (5 points) Solve the dining philosophers problem with monitors rather than semaphores.
(Do this yourself, though, rather than looking for a solution online or in another book!)

2. (5 points) Restrooms are usually designated as men-only or women-only, but this requires
having two restrooms if everyone is to be accommodated. A less expensive approach consistent
with cultural norms in the U.S. would be to have one restroom with a sign on the door that
indicates its current state — empty, in use by at least one woman, or in use by at least one
man. If it is empty, either a man or a women may enter; if it is occupied, a person of the same
sex may enter, but a person of the opposite sex must wait until it is empty. Write pseudocode
for four functions to implement this approach: woman_enter, man_enter, woman_leave, and
man_leave, to be used by the following pseudocode:

/* woman process */

while (TRUE) {
woman_enter () ;
use_restroom() ;
woman_leave();
do_other_stuff();

}

/* man process */

while (TRUE) {
man_enter () ;
use_restroom() ;
man_leave() ;
do_other_stuff () ;

+

You can use any of the synchronization mechanisms we have talked about (shared variables,
semaphores, monitors, or even message passing).



CSCI 3323 Homework 3 Fall 2013

3 Programming Problems (Optional)

Do the following programming problems. You will end up with at least one code file per prob-
lem. Submit your program source (and any other needed files) by sending mail to bmassing@cs.
trinity.edu, with each file as an attachment. Please use a subject line that mentions the course
number and the assignment (e.g., “csci 3323 homework 3”). You can develop your programs on
any system that provides the needed functionality, but I will test them on one of the department’s
Linux machines, so you should probably make sure they work in that environment before turning
them in.

1. (Optional — up to 5 extra-credit points) Write a program to test your solution to either
problem 1 or problem 2. If you want to do this using C and POSIX threads, you could start
with the code for the programming problem in Homework 2. Or you could write in Java
and use its monitor-based synchronization (synchronized methods/blocks plus wait, notify,
and notifyAll) and/or features of the java.util.concurrent library package (which has,
among many other things, a Semaphore library class). You can find some simple examples of
multithreaded Java programs on the “Sample programs” page for my parallel programming
class: http://www.cs.trinity.edu/ bmassing/CS3366 /SamplePrograms/!. The bounded buffer
example may be useful if you want to use monitor-based synchronization.

"http://www.cs.trinity.edu/~bmassing/CS3366/SamplePrograms/



