
CSCI 3323 (Principles of Operating Systems), Fall 2013

Homework 4

Credit: 20 points.

1 Reading

Be sure you have read all of Chapter 2.

2 Problems

Answer the following questions. You may write out your answers by hand or using a word processor
or other program, but please submit hard copy, either in class or in my mailbox in the department
office.

1. (5 points) Five batch jobs (call them A through E) arrive at a computer center at almost
the same time, in the order shown below. Their estimated running times (in minutes) and
priorities are as follows, with 5 indicating the highest priority:

job running time priority

A 10 3

B 6 5

C 2 2

D 4 1

E 8 4

For each of the following scheduling algorithms, determine the turnaround time for each job
and the average turnaround time. Assume that all jobs are completely CPU-bound (i.e., they
do not block). (Before doing this by hand, decide how much of programming problem 1 you
want to do.)

• First-come, first-served (run them in alphabetic order by job name).

• Shortest job first.

• Round robin, using a time quantum of 1 minute.

• Round robin, using a time quantum of 2 minutes.

• Preemptive priority scheduling.

2. (5 points) Suppose that a scheduling algorithm favors processes that have used the least
amount of processor time in the recent past. Why will this algorithm favor I/O-bound
processes yet not permanently starve CPU-bound processes, even if there is always an I/O-
bound process ready to run?

1



CSCI 3323 Homework 4 Fall 2013

3 Programming Problems

Do the following programming problems. You will end up with at least one code file per prob-
lem. Submit your program source (and any other needed files) by sending mail to bmassing@cs.

trinity.edu, with each file as an attachment. Please use a subject line that mentions the course
number and the assignment (e.g., “csci 3323 homework 4”). You can develop your programs on
any system that provides the needed functionality, but I will test them on one of the department’s
Linux machines, so you should probably make sure they work in that environment before turning
them in.

1. (10 points) The starting point for this problem is a C++ program scheduler.cpp1 that
simulates execution of a scheduler, i.e., generates solutions to problems such as the one in the
written part of this assignment. Comments describe input and desired output. Currently the
program simulates only the FCFS algorithm. Your mission is to make it simulate one or more
of the other algorithms mentioned in the written problem (FCFS, SJF, round robin using
time quantums of 1 minute and 2 minutes, and preemptive priority scheduling). You will get
full credit for simulating one algorithm, extra points for simulating additional algorithms.

• Sample input2.

• Output for sample input3.

I chose C++ for the starter code because in theory all of you have had at least some exposure
to C++, and this might be a good opportunity for you to dust off that skill. The starter code
also makes use of some library classes (string and vector) that you may not have worked
with before. string is functionally pretty similar to strings in languages such as Java; vector
represents a templated expandable array (i.e., one with a type parameter that lets you specify
the type of elements in the array). I’m cautiously optimistic that between the starter code,
this toy example4 of using vector, and what you can find on the Web about these classes
(the Wikipedia articles seem okay), you will be able to use them to implement your choice of
scheduling algorithm(s). If you don’t remember, or didn’t learn, how to compile C++ from
the command line in Linux:

g++ -Wall -pedantic scheduler.cpp

However, feel free to rewrite anything about this program, including starting over in a lan-
guage of your choice. Just remember that the program has to run on one of the department
Linux machines, and it needs to accept input from command-line arguments and files — i.e.,
no GUIs, Web-based programs, etc. The latter requirement is to make it possible for me to
automate testing your code. If you make changes to the format of the input — and I prefer
that you don’t — change the comments so they describe the changed requirements.

1http://www.cs.trinity.edu/~bmassing/Classes/CS3323_2013fall/Homeworks/HW04/Problems/scheduler/

scheduler.cpp
2http://www.cs.trinity.edu/~bmassing/Classes/CS3323_2013fall/Homeworks/HW04/Problems/scheduler/

sample-in.txt
3http://www.cs.trinity.edu/~bmassing/Classes/CS3323_2013fall/Homeworks/HW04/Problems/scheduler/

sample-out.txt
4http://www.cs.trinity.edu/~bmassing/Classes/CS3323_2013fall/Homeworks/HW04/Problems/scheduler/

vector-example.cpp

2


