
CSCI 3323 (Principles of Operating Systems), Fall 2013

Homework 6

Credit: 30 points.

1 Reading

Be sure you have read (or at least skimmed) Chapters 4, 5, and 6.

2 Problems

Answer the following questions. You may write out your answers by hand or using a word processor
or other program, but please submit hard copy, either in class or in my mailbox in the department
office.

1. (5 points) The textbook describes more than one strategy for keeping track of free blocks
in a file system (free blocks, bitmaps, and FATs). All of these strategies rely on information
that is kept both on disk and in memory, sometimes with the most-current information only
in memory. What would happen if the copy on disk of whatever data structure is used to
keep track of free blocks was lost or damaged because of a system crash — is there a way to
recover, or do you have to just reformat the disk and hope you backed up any really important
files? Answer separately for MS-DOS FAT-16 (which uses a FAT) and UNIX V7 filesystems
(which uses one of the other strategies).

2. (5 points) Consider a UNIX filesystem (as described in section 4.5.3) in which each i-node
contains 10 direct entries, one single-indirect entry, one double-indirect entry, and one triple-
indirect entry. If a block is 1KB (1024 bytes) and a disk addresses is 4 bytes, what is the
maximum file size, in KB? (Hint: Use the blocksize and size of disk addresses to determine
how many entries each indirect block contain.)

3. (5 points) Consider the following two I/O devices. For each device, say whether you think
programmed I/O or interrupt-driven I/O makes the most sense, and justify your answer.
(Hint: Consider the time required for interrupt processing versus the time needed for the
actual input/output operation.)

(a) A printer that prints at a maximum rate of 400 characters per second, connected to
a computer system in which writing to the printer’s output register takes essentially
no time, and using interrupt-driven I/O means that each character printed requires an
interrupt that takes a total of 50 microseconds (i.e., 50× 10−6 seconds) to process.

(b) A simple memory-mapped video terminal (output only), connected to a system where
interrupts take a minimum of 100 nsec to process and copying a byte into the terminal’s
video RAM takes 10 nsec.

4. (5 points) The textbook divides the many routines that make up an operating system’s
I/O software into four layers. In which of these layers should each of the following be done?
Why? (Assume that in general functionality should be provided at the highest level at which
it makes sense — e.g., in user-level software rather than device-independent software.)

1



CSCI 3323 Homework 6 Fall 2013

(a) Converting floating-point numbers to ASCII for printing.

(b) Computing the track, sector, and head for a disk read operation.

(c) Writing commands to a printer controller’s device registers.

(d) Detecting that an application program is attempting to write data from an invalid buffer
address. (Assume that detecting an invalid buffer address can only be done in supervisor
mode.)

5. (5 points) Suppose at a given point in time a disk driver has in its queue requests to read
cylinders 10, 22, 20, 2, 40, 6, and 38, received in that order. If a seek takes 5 milliseconds
(i.e., 5× 10−3 seconds) per cylinder moved, and the arm is initially at cylinder 20, how much
seek time is needed to process these requests using each of the three scheduling algorithms
discussed (FCFS, SSF, and elevator)? Assume that no other requests arrive while these
are being processed and that for the elevator algorithm the initial direction of movement is
outward (toward larger cylinder numbers).

6. (5 points) Suppose you are designing an electronic funds transfer system, in which there will
be many identical processes that work as follows: Each process accepts as input an amount
of money to transfer, the account to be credited, and the account to be debited. It then locks
both accounts (one at a time), transfers the money, and releases the locks when done. Many
of these processes could be running at the same time. Clearly a design goal for this system
is that two transfers that affect the same account should not take place at the same time,
since that might lead to race conditions. However, no problems should arise from doing a
transfer from, say, account A to account B at the same time as a transfer from account C to
account D, so another design goal is for this to be possible. The available locking mechanism
is fairly primitive: It acquires locks one at a time, and there is no provision for testing a lock
to find out whether it is available (you must simply attempt to acquire it, and wait if it’s not
available). A friend proposes a simple scheme for locking the accounts: First lock the account
to be credited; then lock the account to be debited. Can this scheme lead to deadlock? If
you think it cannot, briefly explain why not. If you think it can, first give an example of a
possible deadlock situation, and then design a scheme that avoids deadlocks, meets the stated
design goals, and uses only the locking mechanism just described.

2


