
CSCI 3323 (Principles of Operating Systems), Fall 2013

Homework X

Credit: Up to 30 extra-credit points.

1 General Instructions

Answer as many (or few) of the following questions as you like. (Notice, however, that you can
receive at most 30 extra-credit points.)

I am also open to the possibility of giving extra credit for other work — other problems from
the textbook, a report on something course-related, etc. If you have an idea for such a project,
let’s negotiate (by e-mail or in person).

For this assignment, please work individually, without discussing the problems with other stu-
dents. If you want to discuss problems with someone, talk to me.

2 Problems

For these problems, please submit hard copy (in my mailbox in the department office or under my
door). (If that’s a huge hassle, e-mail is okay, but I will print it to grade it.)

2.1 Problems from Chapter 9

Answer any or all of the following questions (from the textbook chapter on security).

1. (Up to 2 points.) Answer question 17 on p. 715 of the textbook. (Hint: What are the odds
of being able to guess the password if you know its length? if you don’t?)

2. (Up to 2 points.) Answer question 18 on p. 715 of the textbook.

3. (Up to 2 points.) Answer question 26 on p. 716 of the textbook.

4. (Up to 2 points.) Answer question 27 on p. 716 of the textbook.

5. (Up to 2 points.) Answer question 36 on p. 717 of the textbook.

2.2 Essay Questions

Write a page or more of prose about one or more of the following questions, writing for an audience
of fellow students. Include a short informal bibliography listing the source(s) of your information.

1. (Up to 10 points) We talked briefly early in the semester about VM/370, an operating system
that allows running multiple “guest” operating systems side by side. What are some other
ways of accomplishing similar things? How do they work? (The discussion of virtualization
in Chapter 8 of the textbook looks promising as a source of information.)

1



CSCI 3323 Homework X Fall 2013

2. (Up to 10 points) The computer industry has a history of guessing wrong about how much
memory will be “enough for anyone” and therefore choosing a size for virtual/physical ad-
dresses that proves to be too restrictive — with the result that at some point a transition to
larger addresses must be made, while still allowing (as far as possible) programs using the
older/smaller addresses to execute. Currently there are several features that allow processors
to make use of more memory than can be addressed with 32 bits (e.g., PAE (“Physical Ad-
dress Extensions”) and full 64-bit addressing). How do they work, and how do they (if they
do) allow running programs that use 32-bit addressing?

3 Programming Problems

Do one or more of the following optional programming problems. Submit source code and other files
by e-mail, as for previous assignments. (I.e., submit your program source (and any other needed
files) by sending mail to bmassing@cs.trinity.edu, with each file as an attachment. Please use a
subject line that mentions the course number and the assignment (e.g., “csci 3323 extra credit”).
You can develop your programs on any system that provides the needed functionality, but I will
test them on one of the department’s Linux machines, so you should probably make sure they work
in that environment before turning them in.

1. (Up to 10 extra-credit points). Write a program that simulates execution of one or more
of the following page replacement algorithms: FIFO, Optimal, Second Chance, Clock, NRU
(Not Recently Used), LRU (Least Recently Used), NFU (Not Frequently Used), Aging (with
a 16-bit counter), Working Set, WSClock. In writing your code, feel free to consult any
descriptions of the algorithms, but do not look for code to copy/modify.

How much credit you get will depend on how many algorithms you simulate and how correctly.
You can use any language of your choice, as long as I can run/test your program on the
department machines using an interface more or less like the following. (I’d prefer that
you use exactly this interface for input — it makes my testing job easier — but if you use
something else, put comments at the top of your code telling me how to run your code with
my test data.)

• Command-line arguments:

– Required:

∗ name of input file (format below)

∗ number of page frames

– Optional:

∗ “–clockTickInterval N” to specify interval for “clock ticks“, for algorithms that
need this — the idea being to consider that a “clock tick” happens every N
references)

∗ “–tau N” to specify time interval for working set algorithms

• Input file format:

– number of pages

– one or more lines of the form “R n” or “W n”, where R/W indicates whether this
is a read or write reference, and n is the page number being referenced

Output should be the following information, for each page replacement algorithm imple-
mented:

2



CSCI 3323 Homework X Fall 2013

• name of algorithm

• total number of page references

• number of page references that changed the page (’W’)

• number of page faults

• number of times a page had to be written out

Make the following assumptions:

• Initially memory is empty.

• All memory references are valid — if the page is not in memory, it can be read in from
disk. (You don’t have to simulate that part, just count how often it happens.)

Here are files containing some sample input and output:

• Command-line parameters pagingsimulator.in 4 --clockTickInterval 10 --tau 20

• Input file1

• Output2

2. (Optional — up to 5 extra-credit points) Write a program that given a directory D, blocksize
B, and maximum number of blocks M as command-line arguments prints out how many files
in D and its subdirectories are of size B or less, how many are of size between B and 2B,
etc., up to size MB. (This might be useful in getting an idea of what size files are typical,
so if you had a choice of blocksize you would know what choice might make the most sense.)
Include directories and symbolic links (but count the size of the link and not the file/directory
it links to). Also turn in output of running this program on your home directory in /users

with B and M as below.

Here is sample output for running the program with D = /lib, B = 4096, and M = 20, on
one of the DIAS machines:

Results for directory /lib with blocksize 4096:

910 files of size 1 blocks

1927 files of size 2 blocks

1707 files of size 3 blocks

1495 files of size 4 blocks

1106 files of size 5 blocks

906 files of size 6 blocks

576 files of size 7 blocks

473 files of size 8 blocks

389 files of size 9 blocks

379 files of size 10 blocks

263 files of size 11 blocks

270 files of size 12 blocks

282 files of size 13 blocks

190 files of size 14 blocks

175 files of size 15 blocks

1http://www.cs.trinity.edu/~bmassing/Classes/CS3323_2013fall/Homeworks/HW0X/Problems/

pagingsimulator.in
2http://www.cs.trinity.edu/~bmassing/Classes/CS3323_2013fall/Homeworks/HW0X/Problems/

pagingsimulator.out

3



CSCI 3323 Homework X Fall 2013

153 files of size 16 blocks

174 files of size 17 blocks

168 files of size 18 blocks

99 files of size 19 blocks

109 files of size 20 blocks

1550 files of size 21 blocks or more

(Of course, you won’t be able to examine files in directories you don’t have access to. Just
print error messages for files/directories you can’t access.)

To get maximum points, your program should be in C or C++ and make no use of system
commands such as ls. (You can use another language, or even write a shell script, but
you will get fewer points.) Library functions opendir, readdir, and lstat will probably be
helpful. You might also be interested in functions chdir and strerror. These functions are
described by man pages. (Remember also that man -a foo gives all man pages for foo. This
can be helpful if there is both a command foo and a functionfoo.)

Here is some starter code3 that parses/checks the command-line arguments.

3. (Optional — up to 5 extra-credit points) Write a program that given a directory D as a
command-line argument prints all the “broken” symbolic links in D or any of its subdirec-
tories — that is, symbolic links that point to a file that doesn’t exist. Here is sample out-
put for running the program with D = /users/bmassing/Local/HTML-Documents/CS3323/

Homeworks/HW0X/Problems:

Broken symbolic links in /users/bmassing/Local/HTML-Documents/CS3323/Homeworks/HW0X/Problems:

/users/bmassing/Local/HTML-Documents/Classes/CS3323_2013fall/Homeworks/HW0X/Problems/TestData/barfoo

/users/bmassing/Local/HTML-Documents/Classes/CS3323_2013fall/Homeworks/HW0X/Problems/TestData/foobar

(Again, you won’t be able to examine files in directories you don’t have access to, so just print
error messages. You should be able to access everything in the above directory, however. If
you want to create some test data of your own, remember that to make a symbolic link called
sym pointing to foo, you type ln -s foo sym.)

To get maximum points, your program should be in C or C++ and make no use of system
commands such as ls. (You can use another language, or even write a shell script, but
you will get fewer points.) The library routines mentioned for the previous problem may be
helpful. The starter code may also be helpful, in reminding you how to access command-line
arguments in C.

4. (Optional — up to 5 extra-credit points) Write a program that given a directory D as a
command-line argument finds all the files in D or any of its subdirectories to which there
are two or more hard links and prints, for each of them, all the paths within D that point
to that file. Here is sample output for running the program with D = /users/bmassing/

Local/HTML-Documents/CS3323/Homeworks/HW0X/Problems:

Files with multiple hard links in /users/bmassing/Local/HTML-Documents/CS3323/Homeworks/HW0X/Problems:

/users/bmassing/Local/HTML-Documents/Classes/CS3323_2013fall/Homeworks/HW0X/Problems/homework/index.html

/users/bmassing/Local/HTML-Documents/Classes/CS3323_2013fall/Homeworks/HW0X/Problems/homework/homework.html

/users/bmassing/Local/HTML-Documents/Classes/CS3323_2013fall/Homeworks/HW0X/Problems/TestData/bbb

/users/bmassing/Local/HTML-Documents/Classes/CS3323_2013fall/Homeworks/HW0X/Problems/TestData/bbbb

/users/bmassing/Local/HTML-Documents/Classes/CS3323_2013fall/Homeworks/HW0X/Problems/TestData/bb

/users/bmassing/Local/HTML-Documents/Classes/CS3323_2013fall/Homeworks/HW0X/Problems/TestData/b

/users/bmassing/Local/HTML-Documents/Classes/CS3323_2013fall/Homeworks/HW0X/Problems/TestData/dd

/users/bmassing/Local/HTML-Documents/Classes/CS3323_2013fall/Homeworks/HW0X/Problems/TestData/d

3http://www.cs.trinity.edu/~bmassing/Classes/CS3323_2013fall/Homeworks/HW0X/Problems/filesizes.c

4



CSCI 3323 Homework X Fall 2013

This output means that the two pathnames in the first group reference the same file, the four
pathnames in the second group reference the same file, etc. Output can be in any order as
long as paths that reference the same file are grouped together. (Again, you won’t be able to
examine files in directories you don’t have access to, so just print error messages. You should
be able to access everything in the above directory, however. If you want to create some test
data of your own, remember that to make a hard link called sym pointing to foo, you type
ln foo sym.)

To get maximum points, your program should be in C or C++ and make no use of system
commands such as ls. (You can use another language, or even write a shell script, but you
will get fewer points.) The library routines mentioned for the previous problems may be
helpful. The starter code may also be helpful, in reminding you how to access command-line
arguments in C.

5. (Up to 5 extra-credit points). The Linux lab machines have special files /dev/random and
/dev/urandom that generate sequences of “random” bytes. (Read the man page for urandom
for an explanation of the difference between them.) Write a program that compares the results
of generating N integers using one or both of these special files to the results of generating
N integers using function rand(). (It’s up to you to decide how to compare them. A simple
test might be to count how many are even and how many are odd. You may have a better
idea!) Submit your source code and a text file containing output of one or more executions.
(Hint: You will probably need to use open and read rather than fopen and fscanf to read
from the special file. man pages for these two functions can be found via man 2 open and
man 2 read.)

5


