
CSCI 3323 September 9, 2013

Slide 1

Administrivia

• (None.)

Slide 2

Minute Essay From Last Lecture

• Quite a bit of variation in answers, many somewhat unclear(?). Key point is

whether the o/s can defend itself.

• To recap . . .



CSCI 3323 September 9, 2013

Slide 3

O/S Versus Application Programs — Recap/Review

• Should seem reasonable to make distinction between what O/S can do and

what application programs can do.

• But how to enforce that? i.e., how to make it as difficult as possible for buggy

or malicious application programs to do what they shouldn’t?

Can this problem be solved completely by clever programming? Consider that

most current systems can be asked to load and execute machine-level

application code . . .

Slide 4

O/S Versus Application Programs, Continued

• If you don’t allow that — how do you decide what’s okay?

• If you do allow loading and executing arbitrary code, then some sort of

hardware mechanism for limiting what it can do seems like the only way. This

is the problem “dual-mode operation” is intended to solve.



CSCI 3323 September 9, 2013

Slide 5

O/S Versus Application Programs, Continued

• At hardware level, then, need to keep track of which mode we’re in and use

that information to allow/disallow certain operations (and maybe memory

accesses — though that could be a separate problem/solution).

• To do this efficiently — single bit in a register somewhere, probably a

special-purpose one, checked by “privileged” instructions.

• What happens if unprivileged program tries . . . ? Hardware version of

exception — interrupt.

• How to set this bit? privileged operation, or no?

Slide 6

O/S Versus Application Programs, Continued

• A solution: Include instruction to generate interrupt, and have hardware, on

interrupt, transfer control to a fixed location and set the “privileged” bit. If

what’s at the fixed location is O/S code, then it can do more checking (e.g.,

passwords).

• What if it’s not O/S code?



CSCI 3323 September 9, 2013

Slide 7

O/S Versus Application Programs, Continued

• So maybe we need memory protection too? but we probably needed that

anyway.

• How to make memory protection work? more about that later, but for now —

again, seems like the only way to do this reliably and efficiently is with help

from hardware.

Slide 8

System Call / Interrupt Processing — Recap/Review

• Recall(?) typical mechanism for regular program calls: Put parameters in

agreed-on locations (registers, stack, etc.), issue instruction that saves

current program counter (in another register maybe) and transfers control to

called program. Called program returns using saved program counter.

• System calls are similar except that the “called program” is at a fixed address

and the transfer of control also puts the processor in supervisor/kernel mode.



CSCI 3323 September 9, 2013

Slide 9

Command Shells

• History — early batch systems had to interpret “control cards”; modern

equivalent is to interpret “commands” (usually interactive).

• Not technically part of o/s, but important and related.

• Typical shell functionality:

– Invocation of programs (optionally in background).

– Input/output redirection.

– Program-to-program connections (pipes).

– “Wildcard” capability.

– Scripting capability.

• Examples — MS-DOS command.com; UNIX sh, bash, csh, tcsh,

ksh, zsh, . . .

Slide 10

Homework 1 Programming Problem

• The idea is to write a very simple shell based on the sort-of-pseudocode in

the textbook, using fork and execve system calls.

• To do this, you have to solve a couple of problems:

– Figure out how to use system-call library functions fork and execve.

Overview on next slide; details in man pages.

– Deal with string processing in C (or C++). Some hints in the homework

writeup. Remember that C doesn’t protect you from “buffer overflows”

(e.g., there’s a reason gcc complains about gets).



CSCI 3323 September 9, 2013

Slide 11

Homework 1 Programming Problem, Continued

• fork() function creates and starts a new process. Both original (“parent”)

and new (“child”) processes execute the same program, continuing at

whatever follows call to fork(). Return value from function says which

process is which.

• execve() function discards current program and loads and starts a new

one. If it fails, execution continues with whatever follows; otherwise whatever

follows is ignored!

Slide 12

Minute Essay

• None — sign in.


