CSCI 3323 September 9, 2013

Administrivia

e (None.)

Slide 1
Minute Essay From Last Lecture
e Quite a bit of variation in answers, many somewhat unclear(?). Key point is
whether the o/s can defend itself.

e Torecap...

Slide 2




CSCI 3323 September 9, 2013

-

O/S Versus Application Programs — Recap/Review

e Should seem reasonable to make distinction between what O/S can do and

what application programs can do.

e But how to enforce that? i.e., how to make it as difficult as possible for buggy
or malicious application programs to do what they shouldn’t?

Slide 3 Can this problem be solved completely by clever programming? Consider that

most current systems can be asked to load and execute machine-level

application code ...

-

O/S Versus Application Programs, Continued

e |f you don't allow that — how do you decide what's okay?

e [f you do allow loading and executing arbitrary code, then some sort of
hardware mechanism for limiting what it can do seems like the only way. This
is the problem “dual-mode operation” is intended to solve.

Slide 4




CSCI 3323 September 9, 2013

-

O/S Versus Application Programs, Continued

e At hardware level, then, need to keep track of which mode we're in and use
that information to allow/disallow certain operations (and maybe memory
accesses — though that could be a separate problem/solution).

e To do this efficiently — single bit in a register somewhere, probably a
Slide 5 special-purpose one, checked by “privileged” instructions.

e What happens if unprivileged program tries ... ? Hardware version of

exception — interrupt.

e How to set this bit? privileged operation, or no?

-

O/S Versus Application Programs, Continued

e A solution: Include instruction to generate interrupt, and have hardware, on
interrupt, transfer control to a fixed location and set the “privileged” bit. If
what'’s at the fixed location is O/S code, then it can do more checking (e.g.,
passwords).

Slide 6 e What if it's not O/S code?




CSCI 3323

Slide 7

Slide 8

September 9, 2013

-

O/S Versus Application Programs, Continued

e So maybe we need memory protection too? but we probably needed that
anyway.
e How to make memory protection work? more about that later, but for now —

again, seems like the only way to do this reliably and efficiently is with help

from hardware.

System Call / Interrupt Processing — Recap/Review

e Recall(?) typical mechanism for regular program calls: Put parameters in
agreed-on locations (registers, stack, etc.), issue instruction that saves
current program counter (in another register maybe) and transfers control to

called program. Called program returns using saved program counter.

e System calls are similar except that the “called program” is at a fixed address

and the transfer of control also puts the processor in supervisor/kernel mode.




CSCI 3323 September 9, 2013

Command Shells

e History — early batch systems had to interpret “control cards”; modern

equivalent is to interpret “commands” (usually interactive).
e Not technically part of o/s, but important and related.

e Typical shell functionality:
Slide 9 — Invocation of programs (optionally in background).
— Input/output redirection.
— Program-to-program connections (pipes).
— “Wildcard” capability.
— Scripting capability.
e Examples — MS-DOS conmand. com UNIX sh, bash, csh,t csh,
ksh,zsh, ...

. J

Homework 1 Programming Problem

e The idea is to write a very simple shell based on the sort-of-pseudocode in

the textbook, using f or k and execve system calls.

e To do this, you have to solve a couple of problems:

— Figure out how to use system-call library functions f or k and execve.

Slide 10 Overview on next slide; details in &N pages.

— Deal with string processing in C (or C++). Some hints in the homework
writeup. Remember that C doesn't protect you from “buffer overflows”

(e.g., there's a reason gCC complains about get s).




CSCI 3323 September 9, 2013

Homework 1 Programming Problem, Continued

e fork() function creates and starts a new process. Both original (“parent”)
and new (“child”) processes execute the same program, continuing at
whatever follows call to f or k(') . Return value from function says which

process is which.

Slide 11 e execve() function discards current program and loads and starts a new
one. If it fails, execution continues with whatever follows; otherwise whatever

follows is ignored!

e None — sign in.

Slide 12




