CSCI 3323 October 7, 2013

Administrivia

o Reminder: Quiz 2 Wednesday. Topics from parts of chapter 2 up through
today.

o Homework 2 on the Web; due in a week. Homework 3 coming soon; to be

due before midterm.

Slide 1 e Midterm October 23 (Wednesday).

Minute Essay From Last Lecture

® (Some people got the alleged joke; others didn't.)
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Sidebar: Shared Memory and Synchronization

e Solutions that rely on variables shared among processes assume that
assigning a value to a variable actually changes its value in memory (RAM),
more or less right away. Fine as a first approximation, but reality may be more
complicated, because of various tricks used to deal with relative slowness of

accessing memory:
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Optimizing compilers may keep variables’ values in registers, only

reading/writing memory when necessary to preserve semantics.
Hardware may include cache, logically between CPU and memory, such that
memory read/write goes to cache rather than RAM. Different CPUs’ caches

may not be in synch.

Sidebar: Shared Memory and Synchronization,
Continued

e So, actual implementations need notion of “memory fence” — point at which
all apparent reads/writes have actually been done. Some languages provide
standard ways to do this; others (e.g., C!) don't. C'svol ati | e (“may be
changed by something outside this code”) helps some but may not be
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enough.
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Synchronization Mechanisms — Review/Recap

e Synchronization using only shared variables seems to be tedious and

inefficient.

e “Synchronization mechanisms” are more-abstract ways of coordinating what
processes do. A key point is providing something that potentially makes a
Slide 5 process wait.

Another Synchronization Mechanism — Monitors

e History — Hoare (1975) and Brinch Hansen (1975).
e |dea — combine synchronization and object-oriented paradigm.
® A monitor consists of
— Data for a shared object (and initial values).
Slide 6 — Procedures — only one at a time can run.
e “Condition variable” ADT allows us to wait for specified conditions (e.g., buffer
not empty):
— Value — queue of suspended processes.
— Operations:
* Wait — suspend execution (and release mutual exclusion).

* Signal — if there are processes suspended, allow one to continue. (if

not, signal is “lost”). Some choices about whether signalling process

K continues, or signalled process awakens right away. )
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Bounded Buffer Problem, Revisited
e Define a bounded_buf f er monitor with a queue and i nsert and
I enove procedures.
e Shared variables:
bounded_buffer B(N);
Slide 7 Pseudocode for producers: Pseudocode for consumers:
while (true) { while (true) {
item = generate(); B.renmove(item;
B.insert(item; use(item;
} }
Bounded-Buffer Monitor
e Data:
buffer B(N); // N constant, buffer enpty
int count = O;
condition full;
condition enpty;
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e Procedures:
insert(itemitm {
if (count ==
wait(full);
put(itm B);
count += 1;
signal (enpty);
}

e Does this work? (Yes.)

renove(item& tm {
if (count == 0)
wai t (enpty);
itm= get(B);
count -=1;
signal (full);
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Implementing Monitors

e Requires compiler support, so more difficult to implement than (e.g.)

semaphores.

e Java’'s methods for thread synchronization are based on monitors . ..
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Java’s Adaptation of the Monitor Idea
e Data for monitor is instance variables (data for class).
e Procedures for monitor are Synchr oni zed methods/blocks — mutual
exclusion provided by implicit object lock.
e wait,notify,notifyAll methods.
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e No condition variables, but above methods provide more or less equivalent
functionality.
Note that the language specs for Java allow spurious wake-ups. So “best
practice” is to wai t () in a loop, re-checking the desired condition. The

textbook’s bounded-buffer code doesn’t do this (?!).
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Yet Another Synchronization Mechanism — Message
Passing

e Previous synchronization mechanisms all involve shared variables; okay in
some circumstances but not very feasible in others (e.g., multiple-processor
system without shared memory).

Slide 11 o |dea of message passing — each process has a unique ID; two basic
operations:
— Send — specify destination ID, data to send (message).

— Receive — specify source ID, buffer to hold received data. Usually some
way to let source ID be “any”.

Message Passing, Continued

e Exact specifications can vary, but typical assumptions include:

— Sending a message never blocks a process (more difficult to implement
but easier to work with).

— Receiving a message blocks a process until there is a message to receive.
Slide 12 — All messages sent are eventually available to receive (can be non-trivial to
implement).

— Messages from process A to process B arrive in the order in which they
were sent.
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Implementing Message Passing

o On a machine with no physically shared memory (e.g., multicomputer), must

send messages across interconnection network.

o On a machine with physically shared memory, can either copy (from address

space to address space) or somehow be clever.

Slide 13

Mutual Exclusion, Revisited

o How to solve mutual exclusion problem with message passing?

e Several approaches based on idea of a single “token”; process must “have
the token” to enter its critical region.
(I.e., desired invariant is “only one token in the system, and if a process is in

Slide 14 its critical region it has the token.”)

® One such approach — a “master process” that all other processes

communicate with; simple but can be a bottleneck.

e Another such approach — ring of “server processes”, one for each “client

process”, token circulates.
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Mutual Exclusion With Message-Passing (1)

Pseudocode for client process:

while (true) {
send(master, "request");
recei ve(master, &nmsg);
/1 assume "token"
do_cr();
send(nmaster, "token");
do_non_cr();

e |dea — have “master process” (centralized control).

Pseudocode for master process:
bool have_token = true;
queue waitQ
while (true) {
recei ve( ANY, &msg);
if (msg == "request") {
if (have_token) {
send(msg. sender, "token");
have_t oken = fal se;
}
el se
enqueue(sender, waitQ;
}
else { // assunme "token"
if (enpty(waitQ)
have_t oken = true;
else {
p = dequeue(waitQ;
send(p, “token");

Mutual Exclusion With Message-Passing (2)

e |dea — ring of servers, one for each client.

Pseudocode for client process:

while (true) {
send(ny_server, "request");
recei ve(ny_server, &msg);
/1 assume "token"
do_cr();
send(ny_server, "token");
do_non_cr();

Pseudocode for server process:

bool need_token = fal se;
if (ny_id == first)
send(next _server, "“token");
while (true) {
recei ve( ANY, &msg);
if (msg == "request")
need_t oken = true;
else { // assune "token"
if (nmsg.sender == ny_client) {
need_token = fal se;

send( next _server, "token");

}
el se if (need_token)
send(ny_client, "token");

el se

send(next _server, "token");
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Synchronization Mechanisms — Recap

e | ow-level ways of synchronizing — using shared variables only, using TSL
instruction. All seem tedious and inefficient.

e “Synchronization mechanisms” are more-abstract ways of coordinating what

processes do. A key point is providing something that potentially makes a
Slide 17 process wait. Examples include semaphores, monitors, message passing.
Often built using something lower-level.

e Anything about synchronization mechanisms that is particularly unclear or
that you want to hear more about?
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