
CSCI 3323 October 16, 2013

Slide 1

Administrivia

• Reminder: Homework 2 due today.

• About the midterm . . .

I wanted us it include all of Chapters 1 and 2, but that’s not realistic if it’s going

to happen a week from today. I’m inclined to move it to Friday after break and

have it cover only material through today’s lecture. Then we can have one

more homework, over what we’ve done since the preceding homework.

Please send me mail today if this is not okay; otherwise we’ll reschedule.

Slide 2

Classical IPC Problems

• Literature (and textbooks) on operating systems talk about “classical

problems” of interprocess communication.

• Idea — each is an abstract/simplified version of problems o/s designers

actually need to solve. Also a good way to compare ease-of-use of various

synchronization mechanisms.

• Examples so far — mutual exclusion, bounded buffer.

• Other examples sometimes described in silly anthropomorphic terms, but

underlying problem is a simplified version of something “real”.



CSCI 3323 October 16, 2013

Slide 3

Dining Philosophers Problem

• Scenario (originally proposed by Dijkstra, 1972):

– Five philosophers sitting around a table, each alternating between thinking

and eating.

– Between every pair of philosophers, a fork; philosopher must have two

forks to eat.

– So, neighbors can’t eat at the same time, but non-neighbors can.

• Why is this interesting or important? It’s a simple example of something more

complex than mutual exclusion — multiple shared resources (forks),

processes (philosophers) must obtain two resources together. (Why five?

smallest number that’s “interesting”.)

Slide 4

Dining Philosophers — Naive Solution

• Naive approach — we have five mutual-exclusion problems to solve (one per

fork), so just solve them.

• Does this work? No — deadlock possible.



CSCI 3323 October 16, 2013

Slide 5

Dining Philosophers — Simple Solution

• Another approach — just use a solution to the mutual exclusion problem to let

only one philosopher at a time eat.

• Does this work? Well, it “works” w.r.t. meeting safety condition and no

deadlock, but it’s too restrictive.

Slide 6

Dining Philosophers — Dijkstra Solution

• Another approach — use shared variables to track state of philosophers and

semaphores to synchronize.

• I.e., variables are

– Array of five state variables (states[5]), possible values

thinking, hungry, eating. Initially all thinking.

– Semaphore mutex, initial value 1, to enforce one-at-a-time access to

states.

– Array of five semaphores self[5], initial values 0, to allow us to make

philosophers wait.

• And then the code is somewhat complex . . .



CSCI 3323 October 16, 2013

Slide 7

Dining Philosophers — Code

• Shared variables as on previous slide.

Pseudocode for philosopher i:
while (true) {

think();

down(mutex);

state[i] = hungry;

test(i);

up(mutex);

down(self[i]);

eat();

down(mutex);

state[i] = thinking;

test(right(i));

test(left(i));

up(mutex);

}

Pseudocode for function:
void test(i)

{

if ((state[left(i)] != eating) &&

(state[right(i)] != eating) &&

(state[i] == hungry))

{

state[i] = eating;

up(self[i]);

}

}

Slide 8

Dining Philosophers — Dijkstra Solution Works?

• Could there be problems with access to shared state variables?

• Do we guarantee that neighbors don’t eat at the same time?

• Do we allow non-neighbors to eat at the same time?

• Could we deadlock?

• Does a hungry philosopher always get to eat eventually?

• (To be continued . . . )



CSCI 3323 October 16, 2013

Slide 9

Minute Essay

• None — quiz.


