
CSCI 3323 November 8, 2013

Slide 1

Administrivia

• Reminder: Homework 4 due today.

• Quiz 4 next Friday.

Slide 2

Memory Management — Recap

• The problem we’re solving — partition physical memory among processes.

• Two related issues — program relocation and memory protection. Whether

program relocation is potentially a problem depends on the processor’s

instruction set and on the program — are there instructions that use absolute

addresses, and does the program use them? (For MIPS, some forms of jump

and load/store instructions could.)

• Both nicely solved by defining “address space” abstraction and implementing

with help from hardware (MMU). Also makes it easier to move processes

around in memory. (Why would you want to?)

• We looked briefly at several schemes in which each process’s memory is

contiguous. Good fit for simple MMU but not very flexible. Can we do better?

Yes . . .



CSCI 3323 November 8, 2013

Slide 3

Paging

• Idea — divide both address spaces and memory into fixed-size blocks

(“pages” and “page frames”), allow non-contiguous allocation.

• Consider tradeoffs yet again — complexity versus flexibility, efficient use of

memory.

Slide 4

Paging — Mapping Program to Physical Addresses

• One consequence — mapping from program addresses to physical

addresses is much more complicated.

• How? “page table” for each process maps pages of address space to page

frames; use this to calculate physical address from program address.

(Are there page sizes for which this is easier?)

• As with base/limit scheme, makes more sense to implement this in MMU.

(Notice again interaction between hardware design and o/s design.)

• Could let page table size vary, but easier to make them all the same (i.e., each

process has the same size address space), have a bit to indicate valid/invalid

for each entry. Attempt to access page with invalid bit — “page fault”.



CSCI 3323 November 8, 2013

Slide 5

Paging and Virtual Memory

• Idea — extend this scheme to provide “virtual memory” — keep some pages

on disk. Allows us to pretend we have more memory than we really do.

• (Compare to swapping. Details later.)

Slide 6

Paging and Memory Protection

• This scheme also provides memory protection. (How?)

• We could also use it to allow processes to share memory. (How?)



CSCI 3323 November 8, 2013

Slide 7

Minute Essay

• To do its job the MMU must have access to the current process’s page table.

The textbook mentions two simple schemes for doing this:

– Keep the entire table in (processor) registers.

– Keep the table in memory and have a particular processor register point to

its starting location.

• What advantages/disadvantages can you think of for each of these? (Think

about context switching between processes and also about how quickly the

MMU will be able to translate each address.)

Slide 8

Minute Essay Answer

• The first scheme almost surely makes for faster translations, but for a large

page table it will require a lot of registers, which would make context switches

slow. The second scheme won’t slow down context switches, but as stated it

isn’t going to make for fast translation.


