
CSCI 3323 November 15, 2013

Slide 1

Administrivia

• Reminder: Homework 5 due Monday.

Slide 2

Minute Essay From Last Lecture

• (Review question.)

• Most people didn’t (IMO) come very close. Which disk(s) are being used for

paging was significant only in tipping them off that it was being used a lot —

which meant a lot of paging activity, and that was the source of the trouble.

• Whether it still happens, well, it’s probably still possible, but the size of real

memory makes it a lot less likely.



CSCI 3323 November 15, 2013

Slide 3

Modeling Page Replacement Algorithms

• Intuitively obvious that more memory leads to fewer page faults, right? Not

always!

• Counterexample — “Belady’s anomaly”, sparked interest in modeling page

replacement algorithms.

• Modeling based on simplified version of reality — one process only, known

inputs. Can then record “reference string” of pages referenced.

• Given reference string, p.r.a., and number of page frames, we can calculate

number of page faults.

• How is this useful? can compare different algorithms, and also determine if a

given algorithm is a “stack algorithm” (more memory means fewer page

faults).

Slide 4

Page Replacement Algorithms — Recap

• Nice summary in textbook (table at end of section 3.4).

• Tanenbaum says best choices are aging, WSClock. (Review these two from

11/13 notes.)

• Now move on to other issues to consider . . .



CSCI 3323 November 15, 2013

Slide 5

Demand Paging Versus Prepaging

• The purest form of paging is “demand paging” — processes are started with

no pages in memory, and pages are loaded into memory on demand only.

• An alternative is “prepaging” — try to load pages in advance of demand.

How?

Slide 6

Global Versus Local Allocation

• In deciding which page to replace, consider all pages (“global allocation”), or

just those that belong to the current process (“local allocation”)?

• Generally, global approach works better, but not all page replacement

algorithms can work that way (e.g., WSClock). Hybrid strategy — combine

local approach with some way to vary processes’ allocations.



CSCI 3323 November 15, 2013

Slide 7

Thrashing and Load Control

• What happens if combined working sets of all processes don’t fit into

memory? “Thrashing”. (See minute essay from last time!)

• What to do? temporarily “swap out” some processes, or other forms of “load

control”.

Slide 8

One More Design Issue

• Page replacement algorithms as discussed all seem based on the idea that

we let memory fill up, and then “steal” page frames as needed. Is that really

the best way . . .

• An alternative — background process (“paging daemon”) that tries to keep a

supply of free page frames, or at least ones that can be stolen without

needing to write out their contents. Can use algorithms similar to page

replacement algorithms to do this.



CSCI 3323 November 15, 2013

Slide 9

Paging — Operating System Versus MMU

• Some aspects of paging are dealt with by hardware (MMU) — translation of

program addresses to physical addresses, generation of page faults, setting

of R and M bits.

• Other aspects need o/s involvement. What/when?

Slide 10

Paging — Operating System Involvement

• Process creation requires setting up page tables and other data structures.

Process termination requires freeing them.

• Context switches require changing whatever the MMU uses to find the current

page table.

• And of course it’s the operating system that handles page faults!

• Some details . . .



CSCI 3323 November 15, 2013

Slide 11

Processing Memory References — MMU

• Does cache contain data for (virtual) address? If so, done.

• Does TLB contain matching page table entry? If so, generate physical

address and send to memory bus.

• Does page table entry (in memory) say page is present? If so, put PTE in TLB

and as above.

• If page table entry says page not present, generate page fault interrupt.

Transfers control to interrupt handler.

Slide 12

Processing Memory References — Page Fault Interrupt
Handler

• Is page on disk or invalid (based on entry in process table, or other o/s data

structure)? If invalid, error — terminate process.

• Is there a free page frame? If not, choose one to steal. If it needs to be saved

to disk, start I/O to do that. Update process table, PTE, etc., for “victim”

process. Block process until I/O done.

• Start I/O to bring needed page in from swap space (or zero out new page). If

I/O needed, block process until done.

• Update process table, etc., for process that caused the page fault, and restart

it at instruction that generated page fault.



CSCI 3323 November 15, 2013

Slide 13

Minute Essay

• None — quiz.


