
CSCI 3323 November 18. 2013

Slide 1

Administrivia

• Reminder: Homework 5 due today. (Questions?)

• Quiz 5 a week from today.

Slide 2

Sharing Pages

• Shared pages can be useful, but can also present problems.

• Multiple processes running the same program is relatively easy (why?) but

has one potential downside (what?)

• UNIX fork system call is — interesting in this context. POSIX definition

says that child process’s address space is basically a copy of the parent’s

address space. What’s the easy-to-implement way to do this? What downside

does that have in current systems? Is there a way to reduce its impact? And

why duplicate in the first place?



CSCI 3323 November 18. 2013

Slide 3

Sharing Pages and fork

• Duplicating pages is easy but inefficient, especially if the child process is

going to call execve or something similar right away. Some systems use

“copy-on-write” to improve efficiency.

• Why did the people who designed UNIX require this duplication . . . Possibly

because it makes some things easy (such as setting up parent/child pipes)

and wasn’t very costly when designed. Windows’ system call for creating

processes takes a different approach. Maybe that’s better!

Slide 4

Sharing Pages, Continued

• One use for shared pages is multiple processes running the same program.

• What about sharing code at a level below whole programs (UNIX “shared

libraries”, Windows DLLs)? Seems attractive; are there potential problems?



CSCI 3323 November 18. 2013

Slide 5

Shared Libraries

• One attraction is somewhat obvious — if code for library functions (e.g.,

printf) is statically linked into every program that uses it, programs need

more memory — seems wasteful if processes can share one copy of code in

memory.

• Another attraction is that library code can be updated independently of

programs that use it. (Is there a downside to that?)

• How to make this happen . . . At link time, programs get “stub” versions of

functions. References to real versions resolved at load time. Does this remind

you of anything? and suggest a possible problem? how to fix?

Slide 6

Shared Libraries, Continued

• Downside of replacing shared libraries — may break applications that call

their function. UNIX provides a way around this.

• Resolving references to shared code at load time — finer-grained version of

“relocation problem”, no? and fixable by making sure library contains only

“position-independent code”.



CSCI 3323 November 18. 2013

Slide 7

Memory-Mapped File I/O

• Worth mentioning here that some systems also provide a mechanism (e.g.,

via system calls) to allow reading/writing whole files into/from memory. If

there’s enough memory, this could improve performance.

• Example of how this works in Linux — man page for mmap.

Slide 8

Paging — One More Hardware Issue

• (Not discussed in class but worth reading about.)

• What if page to be replaced is waiting for I/O? probably trouble if we replace it

anyway.

• One solution — allow pages to be “locked”.

• Another solution — do all I/O to o/s pages, then move to user pages.



CSCI 3323 November 18. 2013

Slide 9

Processing Memory References — Details Still To Fill In

• How to keep track of pages on disk.

• How to keep track of which page frames are free.

• How to “schedule I/O” (but that’s later).

Slide 10

Keeping Track of Pages on Disk

• To implement virtual memory, need space on disk to keep pages not in main

memory. Reserve part of disk for this purpose (“swap space”); (conceptually)

divide it into page-sized chunks. How to keep track of which pages are

where?

• One approach — give each process a contiguous piece of swap space.

Advantages/disadvantages?

• Another approach — assign chunks of swap space individually.

Advantages/disadvantages?

• Either way — processes must know where “their” pages are (via page table

and some other data structure), operating system must know where free slots

are (in memory and in swap space).



CSCI 3323 November 18. 2013

Slide 11

One More Memory Management Strategy —
Segmentation

• (Not discussed in class but worth reading about.)

• Idea — make program address “two-dimensional” / separate address space

into logical parts. So a virtual address has two parts, a segment and an offset.

• To map virtual address to memory location, need “segment table”, like page

table except each entry also requires a length/limit field. (So this is like a

cross between contiguous-allocation schemes and paging.)

Slide 12

Segmentation, Continued

• Benefits?

– Nice abstraction; nice way to share memory.

– Flexible use of memory — can have many areas that grow/shrink as

required, not just heap and stack — especially if we combine with paging.

• Drawbacks?

– External fragmentation possible (can offset by also paging).

– More complex.

– “Paging” in/out more complex — issues similar to with

contiguous-allocation.



CSCI 3323 November 18. 2013

Slide 13

Memory Management in Windows

• Apparently very complex, but basic idea is paging.

• Intraprocess memory management is in terms of code regions (some shared

— DLLs), data regions, stack, and area for o/s. “Virtual Address Descriptor”

for each contiguous group of pages tracks location on disk, etc.

• Memory-mapped files can make I/O faster and allow processes to (in effect)

share memory.

• Demand-paged, with six (!) background threads that try to maintain a store of

free page frames. Page replacement algorithm is based on idea of working

set.

Slide 14

Memory Management in UNIX/Linux

• Very early UNIX used contiguous-allocation or segmentation with swapping.

Later versions use paging. Linux uses multi-level page tables; details depend

on architecture (e.g., three levels for Alpha, two for Pentium).

• Intraprocess memory management is in terms of text (code) segment, data

segment, and stack segment. Linux reserves part of address space for o/s.

For each contiguous group of pages, “vm area struct” tracks location on disk,

etc.

• Memory-mapped files can make I/O faster and allow processes to (in effect)

share memory.

• Demand-paged, with background process (“page daemon”) that tries to

maintain a store of free page frames. Page replacement algorithms are

mostly variants of clock algorithm.



CSCI 3323 November 18. 2013

Slide 15

Minute Essay

• Anything about memory management you’d like to hear more about / have

clarified?


