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Administrivia

• Reminder: Homework 5 due today. (Questions?)

• Quiz 5 a week from today.
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Sharing Pages

• Shared pages can be useful, but can also present problems.

• Multiple processes running the same program is relatively easy (why?) but

has one potential downside (what?)

• UNIX fork system call is — interesting in this context. POSIX definition

says that child process’s address space is basically a copy of the parent’s

address space. What’s the easy-to-implement way to do this? What downside

does that have in current systems? Is there a way to reduce its impact? And

why duplicate in the first place?
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Sharing Pages and fork

• Duplicating pages is easy but inefficient, especially if the child process is

going to call execve or something similar right away. Some systems use

“copy-on-write” to improve efficiency.

• Why did the people who designed UNIX require this duplication . . . Possibly

because it makes some things easy (such as setting up parent/child pipes)

and wasn’t very costly when designed. Windows’ system call for creating

processes takes a different approach. Maybe that’s better!
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Sharing Pages, Continued

• One use for shared pages is multiple processes running the same program.

• What about sharing code at a level below whole programs (UNIX “shared

libraries”, Windows DLLs)? Seems attractive; are there potential problems?
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Shared Libraries

• One attraction is somewhat obvious — if code for library functions (e.g.,

printf) is statically linked into every program that uses it, programs need

more memory — seems wasteful if processes can share one copy of code in

memory.

• Another attraction is that library code can be updated independently of

programs that use it. (Is there a downside to that?)

• How to make this happen . . . At link time, programs get “stub” versions of

functions. References to real versions resolved at load time. Does this remind

you of anything? and suggest a possible problem? how to fix?
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Shared Libraries, Continued

• Downside of replacing shared libraries — may break applications that call

their function. UNIX provides a way around this.

• Resolving references to shared code at load time — finer-grained version of

“relocation problem”, no? and fixable by making sure library contains only

“position-independent code”.
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Memory-Mapped File I/O

• Worth mentioning here that some systems also provide a mechanism (e.g.,

via system calls) to allow reading/writing whole files into/from memory. If

there’s enough memory, this could improve performance.

• Example of how this works in Linux — man page for mmap.
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Paging — One More Hardware Issue

• (Not discussed in class but worth reading about.)

• What if page to be replaced is waiting for I/O? probably trouble if we replace it

anyway.

• One solution — allow pages to be “locked”.

• Another solution — do all I/O to o/s pages, then move to user pages.
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Processing Memory References — Details Still To Fill In

• How to keep track of pages on disk.

• How to keep track of which page frames are free.

• How to “schedule I/O” (but that’s later).
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Keeping Track of Pages on Disk

• To implement virtual memory, need space on disk to keep pages not in main

memory. Reserve part of disk for this purpose (“swap space”); (conceptually)

divide it into page-sized chunks. How to keep track of which pages are

where?

• One approach — give each process a contiguous piece of swap space.

Advantages/disadvantages?

• Another approach — assign chunks of swap space individually.

Advantages/disadvantages?

• Either way — processes must know where “their” pages are (via page table

and some other data structure), operating system must know where free slots

are (in memory and in swap space).
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One More Memory Management Strategy —
Segmentation

• (Not discussed in class but worth reading about.)

• Idea — make program address “two-dimensional” / separate address space

into logical parts. So a virtual address has two parts, a segment and an offset.

• To map virtual address to memory location, need “segment table”, like page

table except each entry also requires a length/limit field. (So this is like a

cross between contiguous-allocation schemes and paging.)
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Segmentation, Continued

• Benefits?

– Nice abstraction; nice way to share memory.

– Flexible use of memory — can have many areas that grow/shrink as

required, not just heap and stack — especially if we combine with paging.

• Drawbacks?

– External fragmentation possible (can offset by also paging).

– More complex.

– “Paging” in/out more complex — issues similar to with

contiguous-allocation.
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Memory Management in Windows

• Apparently very complex, but basic idea is paging.

• Intraprocess memory management is in terms of code regions (some shared

— DLLs), data regions, stack, and area for o/s. “Virtual Address Descriptor”

for each contiguous group of pages tracks location on disk, etc.

• Memory-mapped files can make I/O faster and allow processes to (in effect)

share memory.

• Demand-paged, with six (!) background threads that try to maintain a store of

free page frames. Page replacement algorithm is based on idea of working

set.
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Memory Management in UNIX/Linux

• Very early UNIX used contiguous-allocation or segmentation with swapping.

Later versions use paging. Linux uses multi-level page tables; details depend

on architecture (e.g., three levels for Alpha, two for Pentium).

• Intraprocess memory management is in terms of text (code) segment, data

segment, and stack segment. Linux reserves part of address space for o/s.

For each contiguous group of pages, “vm area struct” tracks location on disk,

etc.

• Memory-mapped files can make I/O faster and allow processes to (in effect)

share memory.

• Demand-paged, with background process (“page daemon”) that tries to

maintain a store of free page frames. Page replacement algorithms are

mostly variants of clock algorithm.
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Minute Essay

• Anything about memory management you’d like to hear more about / have

clarified?


