
CSCI 3323 December 4, 2013

Slide 1

Administrivia

• Homework 6 on the Web. Due next Wednesday. We also need a “not

accepted past” date for all homeworks. End of the day next Wednesday?

• Reminder: Quiz 6 Friday.

Slide 2

I/O Management — Recap

• Managing I/O devices can be a major part of O/S (by lines of code anyway).

• Boundary between hardware and software — processor has instructions to

communicate with registers in device or device controller. Can be special

instructions or “memory-mapped I/O”.

• Several ways to make use of these instructions . . .



CSCI 3323 December 4, 2013

Slide 3

Interrupts

• When I/O device finishes its work, it generates interrupt, and then —

something happens. What?

• Hardware and software aspects . . .

Slide 4

Interrupts, Continued

• I/O device “interrupts” by signalling interrupt controller.

• Interrupt controller signals CPU, with indication of which device caused

interrupt, or ignores interrupt (so device controller keeps trying) if interrupt

can’t be processed right now.

• Processing is then similar to what happens on traps (interrupts generated by

system calls, page faults, other errors) . . .



CSCI 3323 December 4, 2013

Slide 5

Interrupts, Continued

• On interrupt, hardware locates proper interrupt handler (probably using

interrupt vector), saves critical info such as program counter, and transfers

control (switching into supervisor/kernel mode).

• Interrupt handler saves other info needed to restart interrupted process, tells

interrupt controller when another interrupt can be handled, and performs

minimal processing of interrupt.

Slide 6

Interrupts, Continued

• Worth noting that pipelining (very common in current processors) complicates

interrupt handling — when an interrupt happens, there could be multiple

instructions in various stages of execution. What to do?

• “Precise interrupts” are those that happen logically between instructions. Can

try to build hardware so that this happens always, or sometimes.

• “Imprecise interrupts” are — the other kind. Hardware that generates these

may provide some way for software to find out status of instructions that are

partially complete. Tanenbaum says this complicates o/s writers’ jobs.



CSCI 3323 December 4, 2013

Slide 7

Polling Versus Interrupts

• Three basic approaches to writing programs to do I/O — “programmed”,

“interrupt-driven”, and using DMA.

• Which to use — it depends. (No surprise, right?)

Slide 8

Programmed I/O

• Basic idea: Program tells controller what to do and busy-waits until it says it’s

done.

• Simple but potentially inefficient — for the system as a whole, anyway.



CSCI 3323 December 4, 2013

Slide 9

Interrupt-Driven I/O

• Basic idea: Program tells controller what to do and then blocks. While it’s

blocked, other processes run. When requested operation is done, controller

generates interrupt. Interrupt handler unblocks original program (which, on a

read operation, would then obtain data from device controller).

• More complex, but allows other processing to happen while waiting, so

potentially more efficient for system as a whole. Could, however, result in lots

of interrupts. (Tanenbaum says one per character/byte. Can that be true for

disks?? Open question . . . )

Slide 10

I/O Using DMA

• Basic idea: Similar to interrupt-driven I/O, but transfer of data to memory done

by DMA controller, only one interrupt per block of data.

• Complexity versus efficiency tradeoffs similar to interrupt-driven I/O, but may

result in fewer interrupts and allow overlap of computation and I/O.



CSCI 3323 December 4, 2013

Slide 11

Goals of I/O Software

• Device independence — application programs shouldn’t need to know what

kind of device.

• Uniform naming — conventions that apply to all devices (e.g., UNIX path

names, Windows drive letter and path name).

• Error handling — handle errors at as low a level as possible, retry/correct if

possible.

• “Synchronous interface to asynchronous operations.”

• Buffering.

• Device sharing / dedication.

Slide 12

Layers of I/O Software

• Typically organize I/O-related parts of operating system in terms of layers —

more modular.

• Usual scheme involves four layers:

– User-space software — provide library functions for application programs

to use, perform spooling.

– Device-independent software — manage dedicated devices, do buffering,

etc.

– Device drivers — issue requests to device (or controller), queue requests,

etc.

– Interrupt handlers — process interrupt generated by device (or controller).



CSCI 3323 December 4, 2013

Slide 13

User-Space Software

• Library procedures:

– Simple wrappers — e.g., write just sets up parameters and makes

system call.

– Formatting, e.g., printf.

• Spooling:

– Actual I/O to device (e.g., printer) handled by background process.

– User programs put requests in special directory.

– Examples — printing, network requests.

Slide 14

Device-Independent Software

• Uniform interface to device drivers — naming conventions, protection (who

can access what), etc.

• Buffering — simpler interface for user programs, applies to both input and

output.

• Error reporting — actual I/O errors, and also impossible requests from

programs.

• Allocating and releasing dedicated devices.

• Providing device-independent block size — more uniform interface.



CSCI 3323 December 4, 2013

Slide 15

Device Drivers

• Idea is to have something that mediates between device controller and o/s —

so, need one of these for every combination of o/s and device. Often written

by device manufacturer.

• Called by other parts of o/s, we hope according to one of a small number of

standard interfaces — e.g., “block device” interface, or “character device”

interface. Communicates with device controller in its language (so to speak).

• Normally run in kernel mode. Formerly often compiled into kernel, now

usually loaded dynamically (details vary).

Slide 16

Device Drivers, Continued

• When called, must:

– Check that parameters are okay (return if not).

– Check that device is not in use (queue request if it is).

– Talk to device — may involve many commands, may require waiting (block

if so).

– Check for errors, return info to caller. If there are queued requests,

continue with next one.



CSCI 3323 December 4, 2013

Slide 17

Interrupt Handlers

• Background: Something at one of the higher levels has initiated an I/O

operation and blocked itself (e.g., using a semaphore). When operation

completes, interrupt handler is run.

• Interrupt handler must:

– Save state of current process so it can be restarted.

– Deal with interrupt — acknowledge it (to interrupt controller), run interrupt

service procedure to get info from device controller’s registers/buffers.

– Unblock requesting process.

– Choose next process to run — maybe process that requested I/O, maybe

interrupted process, maybe another — and do context switch.

Slide 18

I/O Software Layers — Example

• As an example, sketch simplified version of what happens when an

application program calls C-library function read. (man 2 read for its

parameters.)

• (Want to read all the details? For Linux, source (not current, but

representative) is available in /users/cs4320/LinuxSource.)



CSCI 3323 December 4, 2013

Slide 19

User-Space Software Layer — C-Library read function

• Library function called from application program, so executes in “user space”.

• Sets up parameters — buffer, count, “file descriptor” constructed by previous

open (as discussed briefly in the chapter on filesystems) — and issues

read system call.

• System call generates interrupt (trap), transferring control to system read

function.

• Eventually, control returns here, after other layers have done their work.

• Returns to caller.

Slide 20

Device-Independent Software Layer — System read
Function

• Invoked by interrupt handler for system calls, so executes in kernel mode.

• Checks parameters — is the file descriptor okay (not null, open for reading,

etc.)? Returns error code if necessary.

• If buffering, checks to see whether request can be obtained from buffer. If so,

copies data and returns.

• If no buffering, or not enough data in buffer, calls appropriate device driver

(file descriptor indicates which one to call, other parameters such as block

number) to fill buffer, then copies data and returns.



CSCI 3323 December 4, 2013

Slide 21

Device-Driver Layer — Interaction with Controller

• Contains code to be called by device-independent layer and also code to be

called by interrupt handler.

• Maintains list of read/write requests for disk (specifying block to read and

buffer).

• When called by device-independent layer, either adds request to its queue or

issues appropriate commands to controller, then blocks requesting process

(application program).

(This is where things become asynchronous.)

• When called by interrupt handler, transfers data to memory (unless done by

DMA), unblocks requesting process, and if other requests are queued up,

processes next one.

Slide 22

Interrupt-Handler Layer — Processing of I/O Interrupt

• Gets control when requested disk operation finishes and generates interrupt.

• Gets status and data from disk controller, unblocks waiting user process.

At this point, “call stack” (for user process) contains C library function, system

read function, and a device-driver function. We return to the device-driver

function and then unwind the stack.



CSCI 3323 December 4, 2013

Slide 23

I/O Continued — Device Specifics

• Textbook presents a tour of major classes of devices. For each, it looks first at

what the hardware can typically do, and then at what kinds of device-driver

functionality we might want to provide.

• Worth reviewing but we will look today at only a few.

Slide 24

Disks — Hardware

• Magnetic disks:

– Cylinder/head/sector addressing may or may not reflect physical geometry

— controller should handle this.

– Controller may be able to manage multiple disks, perform overlapping

seeks.

• RAID (Redundant Array of Inexpensive/Independent Disks):

– Basic idea is to replace single disk and disk controller with “array” of disks

plus RAID controller.

– Two possible payoffs — redundancy and performance (parallelism).

– Six “levels” (configurations) defined. Read all about it in textbook if

interested.

• Optical disks — CD, CD-R, CD-RW, DVD. Okay to skim details!



CSCI 3323 December 4, 2013

Slide 25

Disk Formatting

• Low-level formatting — each track filled with sectors (preamble, data, ECC

bits).

• Higher-level formatting — master boot record, partitions (logical disks),

partition table. Master boot record points to boot block in some partition.

Partition table gives info about partitions (size, location, use).

• Partition formatting — boot block, blocks for file system.

Slide 26

Disk Arm Scheduling Algorithms

• A little more about hardware: Time to read a block from disk depends on seek

time, rotational delay, and data transfer time. First two usually dominate.

• Earlier we said that typical device driver for disk maintains a queue of pending

requests (one per disk, if controller is managing more than one). What order

to process them in? several “disk arm scheduling algorithms”:

– FCFS (first come, first served).

– SSF (shortest seek first).

– Elevator.

How do they compare with regard to ease of implementation, efficiency?



CSCI 3323 December 4, 2013

Slide 27

Disk Error Handling

• Almost all disks have sectors with defects. Some controllers can recognize

them (repeated failures) and avoid them; if not, o/s (device driver) must do

this.

• Other kinds of errors also possible, e.g., failure to correctly position read/write

head; also must be handled either by controller (if possible) or o/s.

Slide 28

Clocks — Hardware

• System clock — can be simple or programmable. Programmable clock can

generate either one interrupt after specified interval or periodic interrupts

(“clock ticks”).

• Backup clock — usually battery-powered, used at startup and perhaps

periodically thereafter.



CSCI 3323 December 4, 2013

Slide 29

Clocks — Software

• Clock(s) can be treated as I/O devices, with device driver(s). Functions to

provide:

– Maintain time of day.

– Enforce time limits on processes.

– Provide timer / alarm-clock function.

– Do accounting, profiling, monitoring, etc.

– Do anything required by page replacement algorithm (turn off R bits in

page table entries, e.g.).

• Provide this functionality in code to be called on periodic clock-tick interrupts.

Slide 30

Character-Oriented Terminals — Hardware Overview

• Hardware consists of character-oriented display (fixed number of rows and

columns) and keyboard, connected to CPU by serial line.

• Actual hardware no longer common (except in mainframe world), but

emulated in software (e.g., UNIX xterm) so old programs still work. (Why

does anyone care? some of those old programs are still useful — e.g., text

editors — and usually very stable.)



CSCI 3323 December 4, 2013

Slide 31

Character-Oriented Terminals — Keyboard

• Hardware transmits individual ASCII characters.

• Device driver can pass them on one by one without processing, or can

assemble them into lines and allow editing (erase, line kill, suspend, resume,

etc.). Typically provide both modes.

• Device driver should also provide:

– Buffering, so users can type ahead.

– Optional echoing.

Slide 32

Character-Oriented Terminals — Display

• Hardware accepts regular characters to display, plus escape sequences

(move cursor, turn on/off reverse video, etc.).

In the old days, escape sequences for different kinds of terminals were

different — hence the need for a termcap database that allows calling

programs to be less aware of device-specific details.

• Device driver should provide buffering.



CSCI 3323 December 4, 2013

Slide 33

GUIs — Hardware Overview

• PC keyboard — sends very low-level detailed info (keys pressed/released);

contrast with keyboard for character-oriented terminal.

• Mouse — sends (delta-x, delta-y, button status) events.

• Display can be vector graphics device (rare now, works in terms of lines,

points, text) or raster graphics device (works in terms of pixels). Raster

graphics device uses graphics adapter, which includes:

– Video RAM, mapped to part of memory.

– Video controller that translates contents of video RAM to display. Typically

has two modes, text and bitmap.

High-end controllers may incorporate processor(s) and local memory.

(Indeed, they’re becoming usable for general-purpose computing —

“GPGPU”.)

Slide 34

GUI Software — Basic Concepts

• “WIMP” — windows, icons, menus, pointing device.

• Can be implemented as integral part of o/s (Windows) or as separate

user-space software (UNIX).



CSCI 3323 December 4, 2013

Slide 35

GUIs — Keyboard

• Hardware delivers very low-level info (individual key press/release actions).

• Device driver translates these to character codes, typically using configurable

keymap.

Slide 36

GUIs — Display (Windows Approach)

• Each window represented by an object, with methods to redraw it.

• Output to display performed by calls to GDI (graphics device interface) —

mostly device-independent, vector-graphics oriented. A .wmf file (Windows

metafile) represents a collection of calls to GDI procedures. (Hm!)



CSCI 3323 December 4, 2013

Slide 37

GUIs — Display (Traditional UNIX Approach)

• X Window System (its real name) designed to support both local input/output

devices and network terminals, in terms of:

– Programs that want to do GUI I/O.

– Program that provides GUI services. Can run on the same system as

applications, a different UNIX system, an X terminal (where it’s the “o/s”),

or under another o/s (“X emulators” for Windows).

Which is the “client” and which the ”server”?

• Core system is client/server communication protocol (input, display events

akin to those in Windows) and windowing system. “Window manager” and/or

“desktop environment” is separate, as are “widget” libraries. Modularity

makes for flexibility and portability, at a cost in performance. Some Linux

distributions moving toward alternatives (presumably to emphasize

performance over flexibility).

Slide 38

Minute Essay

• Are you planning to attend the soccer game Friday instead of coming to

class?


