
CSCI 3323 December 6, 2013

Slide 1

Administrivia

• Final exam is a week from today. I will put a short review sheet on the Web

soon. No idea how much of your graded work I’ll be able to return, but as with

the midterm, I will at least make sample solutions available. We can talk

Monday about scheduling a review session?

Slide 2

Deadlocks — Introduction

• Some resources should not be shared — among processes, computers, etc.

• To enforce this, o/s (or whatever) provides mechanism to give one process at

a time exclusive use, make others wait.

• Possibility exists that others will wait forever — deadlock.

CSCI 3323 December 6, 2013

Slide 3

Resources

• “Resource” is anything that should be used by only one process at a time —

hardware device, piece of information (e.g., database record), etc.

Can be unique (e.g, particular database record) or non-unique (e.g., one

block of a fixed-size disk area such as swap space).

• Preemptible versus non-preemptible — preemptible resources can be taken

away from current owner without causing something to fail (e.g., memory);

non-preemptible resources can’t (e.g., hardware device).

• Normal sequence for using a resource — request it, use it, release it. If not

available when requested, block or busy-wait.

Can easily implement this using semaphores, but then deadlock is possible if

processes aren’t disciplined.

Slide 4

Deadlocks — Definitions and Conditions

• Definition — set of processes is “deadlocked” if each process in set is waiting

for an event that only another process in set can cause.

• Necessary conditions:

– Mutual exclusion — resources can be used by at most one process at a

time.

– Hold and wait — process holding one resource can request another.

– No preemption — resources cannot be taken away but must be released.

– Circular wait — circular chain of processes exists in which each process is

waiting for resource held by next.

• Modeling deadlock — “resource graphs” (examples in textbook).

• What do about them? Various approaches.

CSCI 3323 December 6, 2013

Slide 5

What To Do About Deadlocks — Nothing

• One strategy for dealing with deadlocks — “ostrich algorithm” (ignore

potential for deadlocks, hope they don’t happen).

• Does this work?

Slide 6

Do Nothing, Continued

• Doesn’t always work, of course.

• But simple to implement, and in practice works most of the time.

CSCI 3323 December 6, 2013

Slide 7

What To Do About Deadlocks — Detection and Recovery

• How to detect deadlocks — DFS on resource graph, (or if more than one

resource of each type, algorithm from text).

• When to check for deadlocks:

– Every time a resource is requested.

– At regular intervals.

– When CPU utilization falls below threshold.

• What to do if deadlock is found?

– Preemption.

– Rollback.

– Process termination.

• Does this work?

Slide 8

Detection and Recovery, Continued

• Does work.

• But potentially time-consuming, and “what to do” choices aren’t very

attractive!

CSCI 3323 December 6, 2013

Slide 9

What To Do About Deadlocks — Avoidance

• Can base on idea of “safe” states (in which it’s possible to schedule to avoid

deadlock) versus “unsafe” states (in which it’s not). Idea is to avoid unsafe

states. (Details in textbook.)

• “Banker’s algorithm” (Dijkstra, 1965) — idea is to never satisfy request for

resource if it leads to unsafe state. (Details in textbook.)

• Does this work?

Slide 10

Avoidance, Continued

• Does work.

• But not much used because it assumes a fixed number of processes,

resource requirements known in advance.

CSCI 3323 December 6, 2013

Slide 11

What To Do About Deadlocks — Prevention

• Idea here is to make it impossible to satisfy one of the four conditions for

deadlock:

– Mutual exclusion — don’t allow more than one process to use a resource.

E.g., define a printer-spool process to manage printer.

– Hold and wait — require processes to request all resources at the same

time and either get them all or wait.

– No preemption — allow preemption.

– Circular wait — impose strictly increasing ordering on resources, and insist

that all processes request resources “in order”.

• Do these work?

Slide 12

Prevention, Continued

• Don’t allow more than one process to use a resource:

Solves immediate problem but may produce others.

• Require processes to request all resources at the same time and either get

them all or wait:

Works but may not be possible or efficient.

• Allow preemption.

Not usually possible/desirable.

• Impose strictly increasing ordering on resources, and insist that all processes

request resources “in order”.

Works, but finding an ordering may be difficult.

CSCI 3323 December 6, 2013

Slide 13

Deadlocks — Related Issues

• Classical description is in terms of “resources”, but other kinds of deadlock

are possible (e.g., involving communication).

• Other situations that aren’t classical deadlock but are also not good include

“livelock” and “starvation” (see textbook).

Slide 14

Deadlocks — Summary

• Take-home message — there’s some interesting theory related to this topic,

but not a lot of practical advice, except for deadlock prevention.

CSCI 3323 December 6, 2013

Slide 15

Security — Overview

• Goals:

– Data confidentiality — prevent exposure of data.

– Data integrity — prevent tampering.

– System availability — prevent DOS (denial of service).

• What can go wrong:

– Deliberate intrusion — from casual snooping to “serious” intrusion.

– Accidental data loss — “acts of God”, hardware or software error, human

error.

Slide 16

User Authentication

• Based on “something the user knows” — e.g., passwords. Problems include

where to store them, whether they can be guessed, whether they can be

intercepted.

• Based on “something the user has” — e.g., key or smart card. Problems

include loss/theft, forgery.

• Based on “something the user is” – biometrics. Problems include

inaccuracy/spoofing.

CSCI 3323 December 6, 2013

Slide 17

Attacks From Within

• Trojan horses (and how this relates to $PATH).

• Login spoofing (and how this related to the Windows control-alt-delete login

prompt).

• Logic bombs and trap doors.

• Buffer overflows (and how this relates to, e.g, gets).

• Code injection attacks.

• And many more . . .

Slide 18

Buffer Overflows

• How many times, when you read the technical description of a security flaw,

do you notice the phrase “buffer overflow”? (For me — often.)

• You already know what a buffer overflow is, from writing programs in C, and

how it can lead to interesting(?) bugs.

• How can this be turned to advantage by crackers? Textbook provides a brief

description. A frequently-mentioned paper is called “Smashing the Stack for

Fun and Profit”. Interesting reading, but the methods apparently don’t work on

systems that disallow executing code from “the stack”. Textbook mentions

alternatives that do still work.

CSCI 3323 December 6, 2013

Slide 19

“Attacks From Within” — Summary?

• Textbook discusses several ways programs can be made to do things their

authors would not want and probably did not intend — buffer overflows, code

injection attacks, etc.

• Common factor (my opinion!) is what one might call insufficient paranoia on

the part of the programmers.

Slide 20

Attacks From Outside

• Can categorize as viruses (programs that reproduce themselves when run),

worms (self-replicating), spyware, etc. — similar ideas, though.

• Many, many ways such code can get invoked — when legit programs are run,

at boot time, when file is opened by some applications (“macro viruses”), etc.

• Also many ways it can spread — once upon a time floppies were vector of

choice, now networks or e-mail. Common factors:

– Executable content from untrustworthy source.

– Human factors.

“Monoculture” makes it easier!

• Virus scanners can check all executables for known viruses (exact or fuzzy

matches), but hard/impossible to do this perfectly.

• Better to try to avoid viruses — some nice advice in textbook.

CSCI 3323 December 6, 2013

Slide 21

“Attacks From Outside” — Summary?

• Textbook discusses several ways “malware” (viruses, worms, etc.) can infect

a system.

• Common factor (my opinion!) is allowing execution of code that does

something unwanted. (Either users don’t realize this is happening, or they

don’t realize the implications?) Social engineering is often involved.

Monoculture makes the malware writer’s job easier.

Slide 22

Safe Execution of “Mobile” Code

• Is there a way to safely execute code from possibly untrustworthy source?

Maybe — approaches include sandboxing, interpretation, code signing.

• Example — Java’s designed-in security:

– At source level, very type-safe — no way to use void* pointers to

access random memory. (Contrast with C and C++!)

– When classes are loaded, “verifier” checks for potential security problems

(not generated by normal compilers, but could be done by hand).

– At runtime, security manager controls what library routines are called —

e.g., applets by default can’t do file operations, many kinds of network

access.

CSCI 3323 December 6, 2013

Slide 23

Trusted Systems

• Is it possible to write a secure O/S? Yes (says Tanenbaum).

• Why isn’t that done?

– People want to run existing code.

– People prefer (or are presumed to prefer) more features to more security.

Slide 24

Designing a Secure System

• “Security through obscurity” isn’t very.

• Better to give too little access than too much — give programs/people as little

as will work.

• Security can’t be an add-on.

• “Keep it simple, stupid.”

CSCI 3323 December 6, 2013

Slide 25

Security — Summary

• Huge topic. Important and (I think!) interesting, though somewhat beyond the

scope of this course.

• Shameless not-self-promotion: Strongly consider taking Dr. Myers’s course

“Information Assurance and Security” (CSCI 3311).

Slide 26

Minute Essay

• None — quiz.

