CSCI 3323 (Principles of Operating Systems), Fall 2014

Homework 1

Credit: 20 points.

1 Reading

Be sure you have read Chapter 1.

2 Problems

Answer the following questions. You may write out your answers by hand or using a word processor
or other program, but please submit hard copy, either in class or in one of my mailboxes (outside
my office or in the ASO).

1. (5 points) For each of the following instructions, say whether it should be executed only in
kernel (i.e., supervisor) mode and briefly explain why.

(Hint: In general, user programs should not be allowed to execute instructions that might
interfere with the operating system’s control of the machine. The most reasonable way to
keep them from doing so is to allow such instructions only in supervisor mode. Notice that
this question refers to machine-level instructions, not necessarily functionality. An operating
system could make the functionality of some of these instructions available to user programs
by wrapping them in system calls, and possibly requiring user programs to supply a password
to (successfully) execute these calls.)

(a) Disable all interrupts.
(b) Read the time-of-day clock.

(c) Change whatever registers are used to determine which part of memory the current
process has access to.

(d) Set the time-of-day clock.

(e) Switch from user mode to supervisor mode.

2. (5 points) Most UNIX systems include some command that allows you to trace all system
calls made by a process or command. Under Linux, this command is strace. For example,
to trace all the system calls made during execution of the command 1s -1 and record the
output in OUT, you would type

strace -o 0OUT 1s -1

Your mission for this problem is to run strace for a command of your choice, capture the
output, and then describe what some of it means. Specifically, I want you to pick at least
four lines of the output using different system calls and briefly explain each of these lines,
describing in general terms what the system call is supposed to do and what the parameters
and return value mean. (So, you will turn in a printout of (part of) the output of strace

CSCI 3323 Homework 1 Fall 2014

with your homework. You might want to mark it up with numbers and then refer to these
numbers in your explanation.)

The man page for strace explains the general format of the output. To find out what the
individual system calls do, you will need to read their man pages. Some of these are easy to
find — e.g., the first call is usually to execve, and man execve will tell you about it. Some
are a little harder to track down — e.g., man write produces information about a write
command rather than a system call — but man -a (e.g., man -a write) will show you all
man pages for functions and commands with a given name, one of which should be the one
you need.

As an example of what I have in mind, here is a line from a trace of the command 1s /users/cs4320
with commentary. (You should choose system calls other than execve.)

execve("/bin/1s", ["1ls", "-1", "/users/cs4320"], [/* 78 vars */]) =0

The call to execve creates a new process to run the command. Parameters are the command
to execute, the arguments to pass to it, and an array of environment variables (78 of them,
apparently!). The return value of 0 probably doesn’t mean anything, since the man page for
execve says that the function doesn’t return if the call is successful.

3 Programming Problems

Do the following programming problems. You will end up with at least one code file per prob-
lem. Submit your program source (and any other needed files) by sending mail to bmassing@cs.
trinity.edu, with each file as an attachment. Please use a subject line that mentions the course
number and the assignment (e.g., “csci 3323 homework 17). You can develop your programs on
any system that provides the needed functionality, but I will test them on one of the department’s
Linux machines, so you should probably make sure they work in that environment before turning
them in.

1. (10 points) Figure 1-19 in chapter 1 of the textbook presents pseudocode for a simple
command shell. Your mission for this problem is to turn this into a C or C+4 program that
runs on a Linux system. Your program should repeatedly prompt the user for a command
and command-line arguments and then run the given command with the given arguments.
You can require that the user give the full path for the command (this is easier to implement
and reasonable in context), and you do not have to do sophisticated parsing of the command-
line arguments (such as wildcard expansion, recognition of environment variables, etc., etc.).
The program, however, should do something sensible (such as displaying an error message) if
it cannot run the command, and it should stop on reaching EOF on standard input so that
it can accept commands from either a file or the keyboard (where pressing control-D signals
EOF). Here is a sample execution:

$./shellsketch
next command?

/bin/1s
Makefile shellsketch-starter.c test-input.txt
shellsketch shellsketch.c typescript

next command?

CSCI 3323 Homework 1 Fall 2014

/bin/echo ab cd ef gh
ab cd ef gh

next command?
junk
cannot execute command: No such file or directory

next command?
/bin/ls junk
/bin/ls: cannot access junk: No such file or directory

next command?

Turning the pseudocode into code mostly involves defining appropriate data structures for
the variables in the pseudocode and replacing the type_prompt and read_command functions
with appropriate real code. You may recall that anything dealing with text strings is apt to
be tedious and messy in C, so here is code that takes care of most of that for you, including
some debug prints to track what it is doing.

simple-shell.c!.
Assuming you compile with gcc, you will need the -std=c99 flag.

Your first step should probably be to read the man page for execve — carefully — to see
what arguments it expects, and then figure out what you need to do to turn what the starter
code produces (an array of pointers to strings) into suitable input to execve. (You should
not need to do much.) Recall (or note) that man pages for functions tell you what if any
#include directives you need to include in your code.

For extra credit (up to 5 points), you can add more functionality (searching a path for the
command, doing more sophisticated parsing of inputs, exiting when the user types “exit”,
etc.). If you do, add something to the comments in the code describing your added function-
ality. If you insist, you can even rewrite any or all of the starter code in C++. Whatever
changes you make, however, be sure your program will still work with input that is valid for
the starter code.

C tip: Get in the habit of compiling with the -Wall flag and paying attention to warning
messages. Sometimes warning messages really are just warnings you can ignore, but often
they are signs of problems you should fix. Code that produces warnings with compiled with
-std=c99 -Wall -pedantic will lose points.

"Mttp://www.cs.trinity.edu/~bmassing/Classes/CS3323_2014fall/Homeworks/HW01/Problems/
simple-shell.c

