
CSCI 3323 (Principles of Operating Systems), Fall 2014

Homework 2

Credit: 50 points.

1 Reading

Be sure you have read Chapter 2.

2 Problems

Answer the following questions. You may write out your answers by hand or using a word processor
or other program, but please submit hard copy, either in class or in one of my mailboxes (outside
my office or in the ASO).

1. (5 points) In class we discussed a proposed solution to the mutual-exclusion problem based
on disabling interrupts, and rejected it because it doesn’t work for systems with more than one
CPU. For a system with a single CPU, however, this could be an acceptable solution, especially
if the critical region is short. Write pseudocode for an implementation of semaphores for a
single-CPU system that might not have a TSL instruction but does have library functions
enable int() and disable int() to enable and disable interrupts respectively. (I.e., say
what variables you would need for each semaphore, and give pseudocode for up() and down().)

2. (5 points) The programming assignment for Homework 1 asked you to write a simple shell
program using fork() to create a new process for each command executed by the shell.
fork() essentially creates this new process by duplicating the process that calls it, including
the state of any data structures related to open files. What advantages does this have? What
are some possible disadvantages? Consider both situations in which the parent process waits
for the child to finish (as in the shell program) and situations in which both processes continue
concurrently. (Hint: Think about the standard input/output/error streams and also about
other kinds of open files. Also try to apply what you know about buffering of input/output.)

3. (5 points) Solve the dining philosophers problem with monitors rather than semaphores.
(Do this yourself, though, rather than looking for a solution online or in another book!)

4. (5 points) Restrooms are usually designated as men-only or women-only, but this requires
having two restrooms if everyone is to be accommodated. A less expensive approach consistent
with cultural norms in the U.S. would be to have one restroom with a sign on the door that
indicates its current state — empty, in use by at least one woman, or in use by at least one
man. If it is empty, either a man or a women may enter; if it is occupied, a person of the same
sex may enter, but a person of the opposite sex must wait until it is empty. Write pseudocode
for four functions to implement this approach: woman enter, man enter, woman leave, and
man leave, to be used by the following pseudocode:

/* woman process */

while (TRUE) {

woman_enter();

1



CSCI 3323 Homework 2 Fall 2014

use_restroom();

woman_leave();

do_other_stuff();

}

/* man process */

while (TRUE) {

man_enter();

use_restroom();

man_leave();

do_other_stuff();

}

You can use any of the synchronization mechanisms we have talked about (shared variables,
semaphores, monitors, or even message passing).

5. (5 points) Five batch jobs (call them A through E) arrive at a computer center at almost
the same time, in the order shown below. Their estimated running times (in minutes) and
priorities are as follows, with 5 indicating the highest priority:

job running time priority

A 10 3

B 6 5

C 2 2

D 4 1

E 8 4

For each of the following scheduling algorithms, determine the turnaround time for each job
and the average turnaround time. Assume that all jobs are completely CPU-bound (i.e., they
do not block). (Before doing this by hand, decide how much of programming problem 2 you
want to do.)

• First-come, first-served (run them in alphabetic order by job name).

• Shortest job first.

• Round robin, using a time quantum of 1 minute.

• Round robin, using a time quantum of 2 minutes.

• Preemptive priority scheduling.

6. (5 points) Suppose that a scheduling algorithm favors processes that have used the least
amount of processor time in the recent past. Why will this algorithm favor I/O-bound
processes yet not permanently starve CPU-bound processes, even if there is always an I/O-
bound process ready to run?

3 Programming Problems

Do the following programming problems. You will end up with at least one code file per prob-
lem. Submit your program source (and any other needed files) by sending mail to bmassing@cs.

trinity.edu, with each file as an attachment. Please use a subject line that mentions the course
number and the assignment (e.g., “csci 3323 homework 2”). You can develop your programs on

2



CSCI 3323 Homework 2 Fall 2014

any system that provides the needed functionality, but I will test them on one of the department’s
Linux machines, so you should probably make sure they work in that environment before turning
them in.

1. (10 points) The starting point for this problem is a simple implementation of the mutual
exclusion problem in C with POSIX threads m-e-problem.c1. Each thread executes a loop
similar to the one presented in class for this problem, except that:

• Rather than looping forever, each thread makes a finite number of trips through the
loop.

• The critical region is represented by code to print some messages and sleep for a random
interval.

• The non-critical region is represented by code to sleep for a random interval.

Currently no attempt is made to ensure that only one thread at a time is in its critical region,
and if you run it you will see that in fact it frequently happens that all the threads are in
their critical region at the same time. Your mission is to correct this.

Start by compiling the program, running it, and observing its behavior. To compile with gcc,
you will need the extra flag -pthread and also -std=c99, e.g.,

gcc -Wall -std=c99 -pthread m-e-problem.c

(Or download this Makefile2 and type make m-e-problem.) The program requires several
command-line arguments, described in comments at the top of the code. (If you have trouble
remembering the order, notice that the program prints a meant-to-be-helpful usage message
if run with no arguments.)

You are to produce two corrected versions of this program:

• The first version should use shared variables only and one of the following algorithms:

– Strict alternation, extended to work for an arbitrary number of threads. (No, this
isn’t a perfect solution, but it does enforce the “one at a time” condition.)

– Peterson’s algorithm, for two threads only. For extra credit, research and implement
a variation that works for more than two threads. Cite a source for your solution
if appropriate — e.g., “I found pseudocode for this solution at the following Web
site.” Or look up and implement Leslie Lamport’s bakery algorithm.

• The second version should use one of the following sets of library functions:

– The POSIX threads mutex functions. man pthread mutex init is a good starting
point for finding out about these functions.

– The POSIX threads semaphore functions. man sem init is a good starting point
for finding out about these functions.

Places in the program that should change are marked with “TODO” comments. You should
not need to add much code. Confirm that your two improved versions behave as expected,

1http://www.cs.trinity.edu/~bmassing/Classes/CS3323_2014fall/Homeworks/HW02/Problems/

m-e-problem.c
2http://www.cs.trinity.edu/~bmassing/Classes/CS3323_2014fall/Homeworks/HW02/Problems/Makefile

3



CSCI 3323 Homework 2 Fall 2014

i.e., when one thread starts its critical region no other thread can start its critical region until
the first one finishes.

NOTE about shared variables: Optimizing compilers play a lot of tricks to reduce actual
accesses to memory, as do most processors. What this means for multithreaded programs is
that it is very difficult to guarantee that changes made to a shared variable in one thread are
visible to other threads. Declaring shared variables volatile avoids at least some compile-
time optimizations but does not provide any guarantees about what will happen at runtime,
especially if there are multiple processors. For the latter, what is needed is a “memory fence”,
i.e., a way of specifying that at a particular point in the program all memory reads and writes
have completed. As far as I know there is no portable way to achieve this in C99; one
must fall back on compiler- or processor-specific code. The starter code includes a function
memory fence that invokes a gcc-specific function providing a memory fence and recommends
its use in the functions to begin and end the critical region. (Disclaimer: Last year the version
of this function present on our classroom/lab machines apparently did nothing! This may be
a bug in gcc, and whether is has been fixed I do not know. My sample solutions seem to
work correctly anyway.) Note that some library functions for synchronization (e.g., the ones
included with POSIX threads) incorporate this functionality as well.

2. (10 points) The starting point for this problem is a C++ program scheduler.cpp3 that
simulates execution of a scheduler, i.e., generates solutions to problems such as the one in the
written part of this assignment. Comments describe input and desired output. Currently the
program simulates only the FCFS algorithm. Your mission is to make it simulate one or more
of the other algorithms mentioned in the written problem (FCFS, SJF, round robin using
time quantums of 1 minute and 2 minutes, and preemptive priority scheduling). You will get
full credit for simulating one algorithm, extra points for simulating additional algorithms.

• Sample input4.

• Output for sample input5.

I chose C++ for the starter code because in theory all of you have had at least some exposure
to C++, and this might be a good opportunity for you to dust off that skill. The starter code
also makes use of some library classes (string and vector) that you may not have worked
with before. string is functionally pretty similar to strings in languages such as Java and
Scala; vector represents a templated expandable array (i.e., one with a type parameter that
lets you specify the type of elements in the array). I’m cautiously optimistic that between
the starter code, this toy example6 of using vector, and what you can find on the Web about
these classes (the Wikipedia articles seem okay), you will be able to use them to implement
your choice of scheduling algorithm(s). If you don’t remember, or didn’t learn, how to compile
C++ from the command line in Linux:

3http://www.cs.trinity.edu/~bmassing/Classes/CS3323_2014fall/Homeworks/HW02/Problems/scheduler/

scheduler.cpp
4http://www.cs.trinity.edu/~bmassing/Classes/CS3323_2014fall/Homeworks/HW02/Problems/scheduler/

sample-in.txt
5http://www.cs.trinity.edu/~bmassing/Classes/CS3323_2014fall/Homeworks/HW02/Problems/scheduler/

sample-out.txt
6http://www.cs.trinity.edu/~bmassing/Classes/CS3323_2014fall/Homeworks/HW02/Problems/scheduler/

vector-example.cpp

4



CSCI 3323 Homework 2 Fall 2014

g++ -Wall -pedantic scheduler.cpp

However, feel free to rewrite anything about this program, including starting over in a lan-
guage of your choice. Just remember that the program has to run on one of the department
Linux machines, and it needs to accept input from command-line arguments and files — i.e.,
no GUIs, Web-based programs, etc. The latter requirement is to make it possible for me to
automate testing your code. If you make changes to the format of the input — and I prefer
that you don’t — change the comments so they describe the changed requirements.

5


