
CSCI 3323 (Principles of Operating Systems), Fall 2014

Homework 3

Credit: 40 points.

1 Reading

Be sure you have read Chapter 3.

2 Problems

Answer the following questions. You may write out your answers by hand or using a word processor
or other program, but please submit hard copy, either in class or in one of my mailboxes (outside
my office or in the ASO).

1. (5 points) Consider a computer system with 10,000 bytes of memory whose MMU uses
the simple base register / limit register scheme described in section 3.2 of the textbook, and
suppose memory is currently allocated as follows:

• Locations 0–1999 are reserved for use by the operating system.

• Process A occupies locations 5000–6999.

• Process B occupies locations 7000–8999.

• Other locations are free.

Answer the following questions about this system.

(a) What value would need to be loaded into the base register if we performed a context
switch to restart process A?

(b) What memory locations would correspond to the following virtual (program) addresses
in process A?

• 100

• 4000

2. (5 points) Consider a computer system using paging to manage memory; suppose it has
64K (216) bytes of memory and a page size of 4K bytes, and suppose the page table for some
process (call it process A) looks like the following.

Page number Present/absent bit Page frame number

0 1 5

1 1 6

2 1 2

3 0 ?

4 0 ?

5 1 7

6 0 ?

. . . 0 ?

15 0 ?

1



CSCI 3323 Homework 3 Fall 2014

Answer the following questions about this system.

(a) How many bits are required to represent a physical address (memory location) on this
system? If each process has a maximum address space of 64K bytes, how many bits are
required to represent a virtual (program) address?

(b) What memory locations would correspond to the following virtual (program) addresses
for process A? (Here, the addresses will be given in hexadecimal, i.e., base 16, to make
the needed calculations simpler. Your answers should also be in hexadecimal. Notice
that if you find yourself converting between decimal and hexadecimal, you are doing the

problem the hard way. Stop and think whether there is an easier way!)

• 0x1420

• 0x2ff0

• 0x4008

• 0x0010

(c) If we want to guarantee that this system could support 16 concurrent processes and give
each an address space of 64K bytes, how much disk space would be required for storing
out-of-memory pages? Explain your answer (i.e., show/explain how you calculated it).
Assume that the first page frame is always in use by the operating system and will never
be paged out. You may want to make additional assumptions; if you do, say what they
are.

3. (5 points) Now consider a bigger computer system, one in which addresses (both physical
and virtual) are 32 bits and the system has 232 bytes of memory. Answer the following
questions about this system. (You can express your answers in terms of powers of 2, if that
is convenient.)

(a) What is the maximum size in bytes of a process’s address space on this system?

(b) Is there a logical limit to how much main memory this system can make use of? That
is, could we buy and install as much more memory as we like, assuming no hardware
constraints? (Assume that the sizes of physical and virtual addresses don’t change.)

(c) If page size is 4K (212) and each page table entry consists of a page frame number and four
additional bits (present/absent, referenced, modified, and read-only), how much space is
required for each process’s page table? (You should express the size of each page table
entry in bytes, not bits, assuming 8 bits per byte and rounding up if necessary.)

(d) Suppose instead the system uses a single inverted page table (as described in section 3.3.4
of the textbook), in which each entry consists of a page number, a process ID, and
four additional bits (free/in-use, referenced, modified, and read-only), and at most 64
processes are allowed. How much space is needed for this inverted page table? (You
should express the size of each page table entry in bytes, not bits, assuming 8 bits per
byte and rounding up if necessary.) How does this compare to the amount of space
needed for 64 regular page tables?

4. (5 points) The operating system designers at Acme Computer Company have been asked
to think of a way of reducing the amount of disk space needed for paging. One person
proposes never saving pages that only contain program code, but simply paging them in
directly from the file containing the executable. Will this work always, never, or sometimes?
If “sometimes”, when will it work and when will it not? (Hint: Search your recollections of
CSCI 2321 — or another source — for a definition of “self-modifying code”.)

2



CSCI 3323 Homework 3 Fall 2014

5. (5 points) How long it takes to access all elements of a large data structure can depend on
whether they’re accessed in contiguous order (i.e., one after another in the order in which
they’re stored in memory), or in some other order. The classic example is a 2D array, in
which performance of nested loops such as

for (int r = 0; r < ROWS; ++r)

for (int c = 0; c < COLS; ++c)

array[r][c] = foo(r,c);

can change drastically for a large array if the order of the loops is reversed. Give an expla-
nation for this phenomenon based on what you have learned from our discussion of memory
management. For extra credit, give another explanation that is actually probably likelier to
be true of current systems.

6. (5 points) Consider (imagine?) a very small computer system with only four page frames.
Suppose you have implemented the aging algorithm for page replacement, using 4-bit counters
and updating the counters after every clock tick, and suppose the R bits for the four pages
are as follows after the first four clock ticks.

Time R bit (page 0) R bit (page 1) R bit (page 2) R bit (page 3)

after tick 1 0 1 1 1

after tick 2 1 0 1 1

after tick 3 1 0 1 0

after tick 4 1 1 0 1

What are the values of the counters (in binary) for all pages after these four clock ticks? If a
page needed to be removed at that point, which page would be chosen for removal?

7. (5 points) A computer at Acme Company used as a compute server (i.e., to run non-
interactive jobs) is observed to be running slowly (turnaround times longer than expected).
The system uses demand paging, and there is a separate disk used exclusively for paging. The
sysadmins are puzzled by the poor performance, so they decide to monitor the system. It is
discovered that the CPU is in use about 20% of the time, the paging disk is in use about 98%
of the time, and other disks are in use about 5% of the time. They are particularly puzzled
by the CPU utilization (percentage of time the CPU is in use), since they believe most of
the jobs are compute-bound (i.e., much more computation than I/O). First give your best
explanation of why CPU utilization is so low, and then for each of the following, say whether
it would be likely to increase it and why.

(a) Installing a faster CPU.

(b) Installing a larger paging disk.

(c) Increasing the number of processes (degree of multiprogramming).

(d) Decreasing the number of processes (degree of multiprogramming).

(e) Installing more main memory.

(f) Installing a faster paging disk.

3



CSCI 3323 Homework 3 Fall 2014

3 Programming Problems

Do the following programming problems. You will end up with at least one code file per prob-
lem. Submit your program source (and any other needed files) by sending mail to bmassing@cs.

trinity.edu, with each file as an attachment. Please use a subject line that mentions the course
number and the assignment (e.g., “csci 3323 homework 3”). You can develop your programs on
any system that provides the needed functionality, but I will test them on one of the department’s
Linux machines, so you should probably make sure they work in that environment before turning
them in.

1. (5 points) Write a program or programs to demonstrate the phenomenon described in
problem 5. Turn in your program(s) and output showing differences in execution time. (It’s
probably simplest to just put this output in a text file and send that together with your
source code file(s).) Try to do this in a way that shows a non-trivial difference in execution
time (so you will likely need to make the arrays or other data structures large). I strongly
recommend that you write your programs in C or C++, or some other language where timing
results are more predictable than they’re apt to be in, for example, a JVM-based language
such as Java or Scala. But anything that can be compiled and executed on one of the Linux
lab machines is fine, as long as you tell me how to compile and execute what you turn in,
if it’s not C or C++. You don’t have to develop and run your programs on one of the lab
machines, but if you don’t, (1) tell me what system you used instead, and (2) be sure your
programs at least compile and run on one of the lab machines, even if they don’t necessarily
give the same timing results as on the system you used.

Possibly helpful hints:

• An easy way to measure how long program mypgm takes on a Linux system is to run it by
typing time mypgm. Another way is to run it with /usr/bin/time mypgm. (This gives
more/different information — try it.) If you’d rather put something in the program
itself to collect and print timing information, for C/C++ programs you could use the
function in timer.h1 to obtain starting and ending times for the section of the code you
want to time, or for Java programs you could use System.currentTimeMillis. Other
programming languages likely have similar functions.

• Your program doesn’t have to use a 2D array (you might be able to think of some other
data structure that produces the same result). If you do use a 2D array, though, keep
in mind the following:

– To the best of my knowledge, C and C++ allocate local variables on the stack,
which may be limited in size. Dynamically allocated variables (i.e., those allocated
with malloc or new) aren’t subject to this limit.

– Dynamic allocation of 2D arrays in C is full of pitfalls. It may be easier to just
allocate a 1D array and fake accessing it as a 2D array (e.g., the element in x[i][j],
if x is a 2D array, is at offset i*ncols+j).

1http://www.cs.trinity.edu/~bmassing/Classes/CS3323_2014fall/Homeworks/HW03/Problems/timer.h

4


