
CSCI 3323 September 10, 2014

Slide 1

Administrivia

• Homework 1 to be on the Web soon; due in a week.

• I say in the syllabus that I try to respond promptly to e-mail. Exceptions are

minute essays and homeworks, which I don’t always look at right away. If you

need a quick reply, make that apparent on the subject line please!

Slide 2

Minute Essay From Last Lecture

• Many people did figure out that the problem was related to using an

unitialized pointer, but beyond that a lot of variation, and some confusion

about what pointers are. (In context — basically memory addresses.)

• Key point is that MS-DOS didn’t protect its own memory, so my little

application program could (and presumably did) overwrite something

important in the o/s’s memory. Symptoms suggest that “something important”

here was something related to processing keyboard input.

(The story may be badly titled, since it’s not clear what’s at fault — the

hardware for not providing memory protection or MS-DOS for not using it.

Either way it illustrates the risk of not having and using memory protection?)

CSCI 3323 September 10, 2014

Slide 3

Minute Essay From Last Lecture — Some Responses

• Pointers form a cycle? (But then why would control-alt-delete not work?)

• “I avoid pointers” since they can lead to even breaking the computer. (For the

record — computer was fine after power-cycle, but my program . . .)

• No provision for throwing an exception on bad memory access? (Pretty

much.)

• Various mentions of segfault — well, no such thing on this system.

• (Aside: “Java doesn’t have pointers.”)

• System “kept looking” for uninitialized pointer — ??

Slide 4

System Calls

• Recall that some things can/should only be done by o/s (e.g., I/O), and

hardware can help enforce that.

• But application programs need to be able to request these services. How can

we make this work? System calls . . .

CSCI 3323 September 10, 2014

Slide 5

System Calls — Mechanism

• Library routine (running in user mode) sets up parameters and issues TRAP

instruction or similar. A key parameter says which system call is being made

(to create a process, open a file, etc.).

• TRAP instruction switches to kernel mode and transfers control to a fixed

address.

• At that address is code for “handler” that uses parameters set up by library

routine to figure out which system call is being invoked and call appropriate

code.

• When processing of system call is finished, control returns to calling program

— if appropriate. (What are other possibilities? Consider situations involving

waiting, errors.) Return to calling program also switches back to user mode.

Slide 6

System Calls — Services Provided

• Typical services provided include creating processes, creating files and

directories, etc., etc. — details depend on (and in some ways define, from

application programmer’s perspective) operating system.

• Examples discussed in textbook:

– POSIX (Portable Operating System Interface (for UNIX)) — about 100

calls.

– Win32 API (Windows 32-bit Application Program Interface) — thousands

of calls.

Worth noting that the actual number of system calls is likely smaller —

interface may contain function calls that are implemented completely in user

space (no TRAP to kernel space).

CSCI 3323 September 10, 2014

Slide 7

Interrupts

• Processing of TRAP instructions is similar to interrupts, so worth mentioning

here:

• Very useful to have a way to interrupt current processing when an unexpected

or don’t-know-when event happens — error occurs (e.g., invalid operation),

I/O operation completes.

• On interrupt, goal is to save enough of current state to allow us to restart

current activity later:

– Save old value of program counter.

– Disable interrupts.

– Transfer control to fixed location (“interrupt handler” or “interrupt vector”) —

normally o/s code that saves other registers, re-enables interrupts, decides

what to do next, etc.

Slide 8

Example: System Calls in MIPS

• MIPS instruction set includes syscall instruction that generate a

system-call exception. MIPS interrupts/exceptions use special-purpose

registers to hold type of exception and address of instruction causing

exception. Before issuing syscall program puts value indicating which

service it wants in register $v0. Parameters for system call are in other

registers (can be different ones for different calls).

• Interrupt handler for system calls looks at $v0 to figure out what service is

requested, other registers for other parameters.

• When done, it uses rfe instruction to restore calling program’s environment,

then returns to caller using value from EPC register.

CSCI 3323 September 10, 2014

Slide 9

Example: System Calls in MIPS/SPIM

• SPIM simulator — a primitive o/s! — defines a short list of system calls.

Example code fragment:

la $a0, hello

li $v0, 4 # "print string" syscall

syscall

....

.data

hello: .asciiz "hello, world!\n";

Slide 10

Command Shells

• History — early batch systems had to interpret “control cards”; modern

equivalent is to interpret “commands” (usually interactive).

• Not technically part of o/s, but important and related.

• Typical shell functionality:

– Invocation of programs (optionally in background).

– Input/output redirection.

– Program-to-program connections (pipes).

– “Wildcard” capability.

– Scripting capability.

• Examples — MS-DOS command.com; UNIX sh, bash, csh, tcsh,

ksh, zsh, . . .

CSCI 3323 September 10, 2014

Slide 11

Homework 1 Programming Problem

• The idea is to write a very simple shell based on the sort-of-pseudocode in

the textbook, using fork and execve system calls.

• To do this, you have to solve a couple of problems:

– Figure out how to use system-call library functions fork and execve.

Overview on next slide; details in man pages.

– Deal with string processing in C (or C++). (This year I will supply starter

code.)

Slide 12

Homework 1 Programming Problem, Continued

• fork() function creates and starts a new process. Both original (“parent”)

and new (“child”) processes execute the same program, continuing at

whatever follows call to fork(). Return value from function says which

process is which.

• execve() function discards current program and loads and starts a new

one. If it fails, execution continues with whatever follows; otherwise whatever

follows is ignored!

CSCI 3323 September 10, 2014

Slide 13

Compiler(s) on the Classroom/Lab Machines

• For the homework you will be writing a C or C++ program. I will test with the

appropriate GNU compiler on the lab machines, so you should probably do so

too.

• This year, though, there are multiple versions of the GNU compiler suite

installed — the one included in the current release of Scientific Linux (gcc

4.4.7) and newer ones that support more of the C++11 standard (gcc 4.8.1,

gcc 4.9.1). To get access to the newest one, type

module load gcc-latest

(You could probably put this in your .bashrc file. Ask me for details if need

be.)

Slide 14

Sidebar: C/C++ Programming Advice

• I strongly recommend always compiling with flags to get extra warnings.

There are lots of them, but you can get a lot of mileage just from -Wall.

Add -pedantic to flag nonstandard usage.

Warnings are often a sign that something is wrong. Sometimes the problem is

a missing #include. man pages tell you if you need one.

• If you want to write “new” C (including C++-style comments), add

-std=c99.

• If typing all of these gets tedious, consider using a simple makefile. Create a

file called Makefile containing the following (the first line for C, the second

for C++):

CFLAGS = -Wall

CXXFLAGS = -Wall

and then compile hello.c to hello by typing make hello, or

CSCI 3323 September 10, 2014

Slide 15

similarly for hello.cpp.

Slide 16

Minute Essay

• None really — sign in, any questions/comments? this is about all for

chapter 1.

