
CSCI 3323 September 15, 2014

Slide 1

Administrivia

• Homework 1 on the Web. Due in a week.

• Quiz 1 a week from today. Open book, open notes, about ten minutes.

Slide 2

O/S Versus Application Programs — Recap/Review

• Should seem reasonable to make distinction between what O/S can do and

what application programs can do.

• But how to enforce that? i.e., how to make it as difficult as possible for buggy

or malicious application programs to do what they shouldn’t?

Can this problem be solved completely by clever programming? Consider that

most current systems can be asked to load and execute machine-level

application code . . .



CSCI 3323 September 15, 2014

Slide 3

O/S Versus Application Programs, Continued

• If you don’t allow that — how do you decide what’s okay?

• If you do allow loading and executing arbitrary code, then some sort of

hardware mechanism for limiting what it can do seems like the only way. This

is the problem “dual-mode operation” is intended to solve.

Slide 4

O/S Versus Application Programs, Continued

• At hardware level, then, need to keep track of which mode we’re in and use

that information to allow/disallow certain operations (and maybe memory

accesses — though that could be a separate problem/solution).

• To do this efficiently — single bit in a register somewhere, probably a

special-purpose one, checked by “privileged” instructions.

• What happens if unprivileged program tries . . . ? Hardware version of

exception — interrupt.

• How to set this bit? privileged operation, or no?



CSCI 3323 September 15, 2014

Slide 5

O/S Versus Application Programs, Continued

• A solution: Include instruction to generate interrupt, and have hardware, on

interrupt, transfer control to a fixed location and set the “privileged” bit. If

what’s at the fixed location is O/S code, then it can do more checking (e.g.,

passwords).

• What if it’s not O/S code?

Slide 6

O/S Versus Application Programs, Continued

• So maybe we need memory protection too? but we probably needed that

anyway.

• How to make memory protection work? more about that later, but for now —

again, seems like the only way to do this reliably and efficiently is with help

from hardware.



CSCI 3323 September 15, 2014

Slide 7

System Call / Interrupt Processing — Recap/Review

• Recall(?) typical mechanism for regular program calls: Put parameters in

agreed-on locations (registers, stack, etc.), issue instruction that saves

current program counter (in another register maybe) and transfers control to

called program. Called program returns using saved program counter.

• System calls are similar except that the “called program” is at a fixed address

and the transfer of control also puts the processor in supervisor/kernel mode.

Slide 8

Process Abstraction

• We want o/s to manage “things happening at the same time” — applications,

hidden tasks such as managing a device, etc.

• Key abstraction for this — “process” — program plus associated data,

including program counter.

• True concurrency (“at the same time”) requires more than one

CPU/processor/core. Can get apparent concurrency via interleaving — model

one virtual CPU per process and have the real processor switch back and

forth among them (“context switch”).

(Aside: In almost all respects, this turns out to be indistinguishable from true

concurrency. “Hm!”?)



CSCI 3323 September 15, 2014

Slide 9

Process Abstraction, Continued

• Can also associate with process an “address space” — range of addresses

the program can use. Simplifying a little, this is “virtual memory” (like the

virtual CPU) that only this process can use. More (lots more) about this later.

(Nitpick: Yes, we also want to be able to share memory among processes.

More about that later too.)

• How to map this to the real hardware? in this chapter we talk about how to

share the real CPU(s) among processes; in the next chapter we talk about

how to share the real memory.

Slide 10

Context Switches

• What is it? switch from one process to another.

• When should this happen?



CSCI 3323 September 15, 2014

Slide 11

Context Switches, Continued

• Should happen

– when a process’s “time slice” is up.

– when there’s an unrecoverable error.

– when there’s something that needs to be done right away (e.g., deal with

input/output).

– maybe other times? (when a process has to wait for something, e.g.).

All signalled by some kind of interrupt.

• Goal is to suspend work on a process such that we can later pick up exactly

where we left off. How do we make that happen?

(Think about what the hardware does when an interrupt happens, what’s

included in that “virtual CPU”.)

Slide 12

Context Switches, Continued

• On interrupt, hardware saves program counter (at least — why?), transfers

control to fixed location — which contains o/s code.

• That O/S code has to

– Save CPU state (program counter, registers, etc.) for the current process.

– Deal with interrupt (details depend on type — I/O versus timer versus . . . ).

– Restore CPU state for “next” process (previously saved), thereby restarting

it.

(“Next” process? yes, o/s might have to choose — more about that later.)



CSCI 3323 September 15, 2014

Slide 13

Process Creation and Termination

• When are processes created?

– At system startup.

– When another process makes a “create process” system call — e.g., to

start a new application.

• When are processes destroyed?

– At program exit.

– After some kinds of errors.

– When another process makes a “kill process” system call.

Slide 14

Process States

• Can think of processes as being in one of three states:

– “Running” — being executed by a CPU.

– “Blocked” — waiting for something to happen (I/O to complete, another

process to do something, etc.) and unable to do anything useful until it

does.

– “Ready” — not blocked, but waiting because all CPUs are currently

executing other processes.

• Possible transitions? Which ones require decision-making?



CSCI 3323 September 15, 2014

Slide 15

Process States, Continued

• Possible transitions (figure in textbook, p. 90):

– Running to blocked — happens when, e.g., a process makes an I/O

request and can’t continue until it’s complete.

– Blocked to ready — happens when the event the blocked process is

waiting for occurs.

– Running to ready, ready to running — needed if we want some sort of

time-sharing (give all non-blocked processes “a turn” frequently).

• Notice that moving to and from “blocked” state doesn’t involve

decision-making, but ready/running transitions do.

• The decision-maker — “scheduler” (to be discussed later). Often “running to

ready” is triggered by an interrupt (I/O, timer, etc.), and “ready to running”

involves this scheduler.

Slide 16

Implementing Processes

• Think about how you would implement this abstraction . . .

• First, you’d want a data structure to represent each process, to include —

what?



CSCI 3323 September 15, 2014

Slide 17

Implementing Processes, Continued

• Data structure to represent each process would include some way to

represent such things as:

– Process ID.

– Process state (running / ready / blocked).

– Information needed for context switch — a place to save program counter,

registers, etc.

– Other stuff as needed — e.g., a list of data structures for open files.

• Then you’d collect these into a table (or some similar structure) — “process

control table”, with individual data structures being “entries in the process

control table” or “process control blocks”.

Slide 18

Implementing Processes, Example — Linux

• Each process (“task”) is represented by a C struct containing information

similar to what we described.

• These structs are chained as a doubly-linked list; there is also a hash

table keyed by PID.

• (This is according to online information about the 2.4 kernel.)



CSCI 3323 September 15, 2014

Slide 19

Processes Versus Threads

• So far I’ve used “process” in an abstract/general way.

• In typical implementations, though, “process” is more specific — something

that has its own address space, list of open files, etc. Often these are called

“heavyweight processes”.

– Advantages — such processes don’t interfere with each other.

– Disadvantages — they can’t easily share data, switching between them is

expensive (“a lot of state” to save/restore).

• For some applications, might be nice to have something that implements the

abstract process idea but allows sharing data and faster context switching —

“threads”.

Slide 20

Threads

• So, threads are another way to implement the process abstraction.

• Typically, a thread is “owned” by a (heavyweight) process, and all threads

owned by a process share some of its state — address space, list of open

files.

• However, each thread has a “virtual CPU” (a distinct copy of registers,

including program counter).

• Implementation involves data structures similar to process table.

• Advantages / disadvantages (compared to processes)?



CSCI 3323 September 15, 2014

Slide 21

Threads, Continued

• Advantages: threads can share data (same address space), switching from

thread to thread is fairly fast.

• Disadvantages: sharing data has its hazards (more about this later).

Slide 22

Implementing Threads

• Two basic approaches — “in user space” and “in kernel space” Various hybrid

schemes also possible.

• Basic idea of “in user space” — operating system thinks it’s managing

single-threaded processes, all the work of managing multiple threads

happens via library calls within each process.

• Basic idea of “in kernel space” — operating system is involved in managing

threads, the work of managing multiple threads happens via system calls

(rather than user-level library calls).

• How do they compare?. . .



CSCI 3323 September 15, 2014

Slide 23

Implementing Threads, Continued

• Implementing in user space is likely more efficient — fewer system calls.

• Implementing in kernel space avoids some problems, though:

– If a thread blocks, it may do so in a way that blocks the whole process.

– Preemptive multitasking is difficult/impossible without help from the kernel,

as is using multiple CPUs.

Slide 24

Adding Multithreading

• If you’ve written multithreaded applications — moving from single-threaded to

multithreaded not trivial:

– Figure out how to split up computation among threads.

– Coordinate threads’ actions (including dealing properly with shared

variables).

• Similar problems in adding multithreading to systems-level programs:

– Deal properly with shared variables (including ones that may be hidden).

– Deal properly with signals/interrupts.



CSCI 3323 September 15, 2014

Slide 25

Implementing Threads, Example — Linux

• Early versions of Linux provided no support for kernel-space threading, but

there were libraries for the user-space version.

• More-recent kernels provide support, but in an interesting way — threads in

some ways are just processes with with some different flags allowing them to

share memory, etc.

Adding support for threads complicates process creation — the basic

mechanism (fork) duplicates an existing process, and if that process is

multithreaded, things can be interesting. Some details in chapter 10, or read

the POSIX standard for fork.

Slide 26

Interprocess Communication

• Processes almost always need to interact with other processes:

– “Ordering constraints” – e.g., process B uses as input some data produced

by process A.

– Use of shared resources — files, shared memory locations, etc.

• Use of shared resources can lead to “race conditions” — output depends on

details of interleaving.

• Processes must communicate to avoid race conditions and otherwise

synchronize.

• “Classical IPC problems” — simplified versions of things you often want to do.



CSCI 3323 September 15, 2014

Slide 27

Minute Essay

• In a system with 8 CPUs and 100 processes, what are the maximum and

minimum number of processes that can be running? ready? blocked?

Slide 28

Minute Essay Answer

• Blocked: Maximum of 100 (unless you assume that there’s an “idle” operating

system process that runs when nothing else does and never blocks, and

maybe one of these is needed for every CPU). Minimum of 0.

• Running: Maximum of 8, because there are 8 CPUs. Minimum of 0 (again

unless you assume that there’s an o/s process that runs when nothing else

does).

• Ready: Maximum of 92, since all CPUs will be running processes if there are

any that can be run. (Depending on details, you might have to add “except

during context switches, when the scheduler is choosing the next process to

run on a CPU”.) Minimum of 0, since they could all be blocked or running.


