
CSCI 3323 September 24, 2014

Slide 1

Administrivia

• Homework 2 to be on the Web soon. I will send mail.

Slide 2

Minute Essay From Last Lecture

• Most people had some exposure to programming involving some kind of

concurrency. Several had done things that sounded interesting and more

ambitious than I might have thought!

• Several people commented that for the programming problem they spent a lot

of time figuring out how to write a few lines of code. That was kind of the plan!

• Only one person mentioned the problem involving strace. I find it

interesting how very many system calls . . .



CSCI 3323 September 24, 2014

Slide 3

Mutual Exclusion Solutions So Far

• Solutions so far have some problems: inefficient, dependent on whether

scheduler/etc. guarantees fairness.

• Also, they’re very low-level, so might be hard to use for more complicated

problems.

• So, people have proposed various “synchronization mechanisms” . . .

Slide 4

Synchronization Mechanisms — Overview

• Synchronization using only shared variables seems to be tedious and

inefficient.

• “Synchronization mechanisms” are more-abstract ways of coordinating what

processes do. A key point is providing something that potentially makes a

process wait.



CSCI 3323 September 24, 2014

Slide 5

Semaphores

• History — 1965 paper by Dijkstra (possibly earlier work by Iverson, of APL/J

fame).

• Idea — define semaphore ADT:

– “Value” — non-negative integer.

– Two operations, both atomic:

∗ up (V) — add one to value.

∗ down (P) — block until value is nonzero, then subtract one.

• Ignoring for now how to implement this — is it useful?

Slide 6

Mutual Exclusion Using Semaphores

• Shared variables:

semaphore S(1);

Pseudocode for each process:

while (true) {

down(S);

do_cr();

up(S);

do_non_cr();

}

• Invariant: “S has value 1 exactly when no process in its critical region, 0

exactly when one process in its critical region, and never has values other

than 0 or 1.”



CSCI 3323 September 24, 2014

Slide 7

Mutual Exclusion Using Semaphores, Continued

• Invariant again: “S has value 1 exactly when no process in its critical region, 0

exactly when one process in its critical region, and never has values other

than 0 or 1.”

Obvious (?) that this means first requirement is met. Can check that others

are met too.

Slide 8

Bounded Buffer Problem

• (Example of slightly more complicated synchronization needs.)

• Idea — we have a buffer of fixed size (e.g., an array), with some processes

(“producers”) putting things in and others (“consumers”) taking things out.

Synchronization:

– Only one process at a time can access buffer.

– Producers wait if buffer is full.

– Consumers wait if buffer is empty.

• Example of use: print spooling (producers are jobs that print, consumer is

printer — actually could imagine having multiple printers/consumers).



CSCI 3323 September 24, 2014

Slide 9

Bounded Buffer Problem, Continued

• Shared variables:

buffer B(N); // initially empty, can hold N things

Pseudocode for producer:

while (true) {

item = generate();

put(item, B);

}

Pseudocode for consumer:

while (true) {

item = get(B);

use(item);

}

• Synchronization requirements:

1. At most one process at a time accessing buffer.

2. Never try to get from an empty buffer or put to a full one.

3. Processes only block if they “have to”.

Slide 10

Bounded Buffer Problem, Continued

• We already know how to guarantee one-at-a-time access. Can we extend

that?

• Three situations where we want a process to wait:

– Only one get/put at a time.

– If B is empty, consumers wait.

– If B is full, producers wait.



CSCI 3323 September 24, 2014

Slide 11

Bounded Buffer Problem, Continued

• What about three semaphores?

– One to guarantee one-at-a-time access.

– One to make producers wait if B is full — so, it should be zero if B is full —

“number of empty slots”?

– One to make consumers wait if B is empty — so, it should be zero if B is

empty — “number of slots in use”?

Slide 12

Bounded Buffer Problem — Solution

• Shared variables:

buffer B(N); // empty, capacity N

semaphore mutex(1);

semaphore empty(N);

semaphore full(0);

Pseudocode for producer:

while (true) {

item = generate();

down(empty);

down(mutex);

put(item, B);

up(mutex);

up(full);

}

Pseudocode for consumer:

while (true) {

down(full);

down(mutex);

item = get(B);

up(mutex);

up(empty);

use(item);

}



CSCI 3323 September 24, 2014

Slide 13

Implementing Semaphores

• We want to define:

– Data structure to represent a semaphore.

– Functions up and down.

• up and down should work the way we said, and we’d like to do as little

busy-waiting as possible.

Slide 14

Implementing Semaphores, Continued

• Idea — represent semaphore as integer plus queue of waiting processes

(represented as, e.g., process IDs).

• Then how should this work . . .



CSCI 3323 September 24, 2014

Slide 15

Implementing Semaphores, Continued

• Variables — integer value, queue of process IDs queue.

down() {

bool zero;

enter_cr();

zero = (value == 0);

if (!zero)

value -= 1;

else

enqueue(current_process, queue);

leave_cr();

if (zero)

block(); // mark current process blocked

}

up() {

process p = null;

enter_cr();

if (empty(queue))

value += 1;

else

p = dequeue(queue);

leave_cr();

if (p != null)

unblock(p); // mark p runnable

}

• enter cr(), leave cr()? next slide.

Slide 16

Implementing Semaphores, Continued

• Revised functions to enter, leave critical region:
enter_cr:

TSL registerX, lockVar

compare registerX with 0

if equal, jump to ok

invoke scheduler # thread yields to another thread

jump to enter_cr

ok:

return

leave_cr:

store 0 in lock

return



CSCI 3323 September 24, 2014

Slide 17

Sidebar: Shared Memory and Synchronization

• Solutions that rely on variables shared among processes assume that

assigning a value to a variable actually changes its value in memory (RAM),

more or less right away. Fine as a first approximation, but reality may be more

complicated, because of various tricks used to deal with relative slowness of

accessing memory:

Optimizing compilers may keep variables’ values in registers, only

reading/writing memory when necessary to preserve semantics.

Hardware may include cache, logically between CPU and memory, such that

memory read/write goes to cache rather than RAM. Different CPUs’ caches

may not be in synch.

Slide 18

Sidebar: Shared Memory and Synchronization,
Continued

• So, actual implementations need notion of “memory fence” — point at which

all apparent reads/writes have actually been done. Some languages provide

standard ways to do this; others (e.g., C!) don’t. C’s volatile (“may be

changed by something outside this code”) helps some but may not be

enough.



CSCI 3323 September 24, 2014

Slide 19

Minute Essay

• None — quiz.


