CSCI 3323 October 6, 2014

Administrivia

e Homework 2 coming soon. Quiz solutions too. Next quiz ...?

e Midterm originally scheduled for a week from Wednesday. Postpone?

Slide 1
Minute Essay From Last Lecture
e Several people noticed the allusion to “a man’s reach should exceed his
grasp”. Yeah.
e Not many people were amused, but it's a pun, and puns ... Some people
found it joke crude/vulgar (“P"?). I'd have said not, but maybe?
Slide 2

e Point is that if you never do more “down” operations than “up” operations, you
never block, so what was the point

CSCI 3323 October 6, 2014

Classical IPC Problems

e Literature (and textbooks) on operating systems talk about “classical

problems” of interprocess communication.

e |dea — each is an abstract/simplified version of problems o/s designers
actually need to solve. Also a good way to compare ease-of-use of various

Slide 3 synchronization mechanisms.
o Examples so far — mutual exclusion, bounded buffer.

e Other examples sometimes described in silly anthropomorphic terms, but

underlying problem is a simplified version of something “real”.

Dining Philosophers Problem

e Scenario (originally proposed by Dijkstra, 1972):
— Five philosophers sitting around a table, each alternating between thinking
and eating.
— Between every pair of philosophers, a fork; philosopher must have two
Slide 4 forks to eat.

— So, neighbors can't eat at the same time, but non-neighbors can.

e Why is this interesting or important? It's a simple example of something more
complex than mutual exclusion — multiple shared resources (forks),
processes (philosophers) must obtain two resources together. (Why five?

smallest number that's “interesting”.)

CSCI 3323 October 6, 2014

4)

Dining Philosophers — Naive Solution

e Naive approach — we have five mutual-exclusion problems to solve (one per
fork), so just solve them.

e Does this work? No — deadlock possible.

Slide 5
Dining Philosophers — Simple Solution
e Another approach — just use a solution to the mutual exclusion problem to let
only one philosopher at a time eat.
e Does this work? Well, it “works” w.r.t. meeting safety condition and no
deadlock, but it's too restrictive.
Slide 6

CSCI 3323

Slide 7

Slide 8

October 6, 2014

_

Dining Philosophers — Dijkstra Solution

e Another approach — use shared variables to track state of philosophers and
semaphores to synchronize.
e |.e, variables are

— Array of five St at e variables (St at es[5]), possible values
t hi nki ng, hungry, eat i ng. Initially all t hi nki ng.

— Semaphore MUt eX, initial value 1, to enforce one-at-a-time access to
St at es.

— Array of five semaphores sel f [5] , initial values 0, to allow us to make

philosophers wait.

e And then the code is somewhat complex ...

Dining Philosophers — Code

e Shared variables as on previous slide.

Pseudocode for philosopher 2: Pseudocode for function:
while (true) { void test(i)
think(); {
down(nut ex) ; if ((state[left(i)] != eating) &&
state[i] = hungry; (state[right(i)] != eating) &&
test(i); (state[i] == hungry))
up(nut ex) ; {
down(sel f[i]); state[i] = eating;
eat(); up(sel f[i]);
down(mut ex) ; }
state[i] = thinking; }
test(right(i));
test(left(i));
up(mut ex) ;

CSCI 3323 October 6, 2014

Dining Philosophers — Dijkstra Solution Works?

e Could there be problems with access to shared St at e variables?

e Do we guarantee that neighbors don't eat at the same time?

e Do we allow non-neighbors to eat at the same time?
?
Slide 9 e Could we deadlock?
e Does a hungry philosopher always get to eat eventually?
Dining Philosophers — Chandy/Misra Solution
e Original solution allows for scenarios in which one philosopher “starves”
because its neighbors alternate eating while it remains hungry.
e Briefly, we could improve this by maintaining a notion of “priority” between
neighbors, and only allow a philosopher to eat if (1) neither neighbor is eating,
Slide 10 and (2) it doesn’t have a higher-priority neighbor that's hungry. After a

philosopher eats, it lowers its priority relative to its neighbors.

CSCI 3323 October 6, 2014

Other Classical Problems

e Readers/writers (in textbook).
e Sleeping barber, drinking philosophers, ...

e Advice — if you ever have to solve problems like this “for real”, read the

literature ...
Slide 11
Review — Processes and Context Switches
e Recall idea behind process abstraction — make every activity we want to
manage a “process”, and run them “concurrently”.
e Apparent concurrency provided by interleaving. (Some) true concurrency
provided by multiple cores/processors.
Slide 12 o To make this work — process table, ready/running/blocked states, context

switches.
e Context switches triggered by interrupts — /O, timer, system call, etc.

e On interrupts, interrupt handler processes interrupt, and then goes back to

some process — but which one?

CSCI 3323 October 6, 2014

4)

Which Process To Run Next?

e Deciding what process to run next — scheduler/dispatcher, using “scheduling
algorithm”.

e \When to make scheduling decisions?
— When a new process is created.

Slide 13 — When a running process exits.

— When a process becomes blocked (I/0, semaphore, etc.).

— After an interrupt.

o One possible decision — “go back to interrupted process” (e.g., after /O

interrupt).

4)

Scheduler Goals

e Importance of scheduler can vary; extremes are

— Single-user system — often only one runnable process, complicated
decision-making may not be necessary (though still might sometimes be a
good idea).

— Mainframe system — many runnable processes, queue of “batch” jobs
Slide 14 waiting, “who’s next?” an important question.

— Servers / workstations somewhere in the middle.
e First step is to be clear on goals — want to make “good decisions”, but what
does that mean? Typical goals for any system:
— Fairness — similar processes get similar service.
— Policy enforcement — “important” processes get better service.

— Balance — all parts of system (CPU, I/O devices) kept busy (assuming
there is work for them).

. J

CSCI 3323 October 6, 2014

Aside — Terminology

e Discussion often in term of “jobs” — holdover from mainframe days, means
“schedulable piece of work”.

e Processes usually alternate between “CPU bursts” and 1/0, can be
categorized as “compute-bound” (“CPU-bound”) or “I/O bound”.

Slide 15 e Scheduling can be “preemptive” or “non-preemptive”.

(Scheduler Goals By System Type)

e For batch (non-interactive) systems, possible goals (might conflict):
— Maximize throughput — jobs per hour.
— Minimize turnaround time.
— Maximize CPU utilization.

Preemptive scheduling may not be needed.
Slide 16 P g may

e For interactive systems, possible goals:
— Minimize response time.
— Make response time proportional (to user’s perception of task difficulty).
Preemptive scheduling probably needed.
e For real-time systems, possible goals:
— Meet time constraints/deadlines.

— Behave predictably.

. J

CSCI 3323 October 6, 2014

Scheduling Algorithms

o Many, many scheduling algorithms, ranging from simple to not-so-simple.

e Point of reviewing lots of them? notice how many ways there are to solve the

same problem (“who should be next?”), strengths/weaknesses of each.

Slide 17

4)

e Would you be okay with rescheduling the midterm, for Monday after fall break
(10/20) or Wednesday (10/22)?

Slide 18

