
CSCI 3323 October 6, 2014

Slide 1

Administrivia

• Homework 2 coming soon. Quiz solutions too. Next quiz . . . ?

• Midterm originally scheduled for a week from Wednesday. Postpone?

Slide 2

Minute Essay From Last Lecture

• Several people noticed the allusion to “a man’s reach should exceed his

grasp”. Yeah.

• Not many people were amused, but it’s a pun, and puns . . . Some people

found it joke crude/vulgar (“P”?). I’d have said not, but maybe?

• Point is that if you never do more “down” operations than “up” operations, you

never block, so what was the point

CSCI 3323 October 6, 2014

Slide 3

Classical IPC Problems

• Literature (and textbooks) on operating systems talk about “classical

problems” of interprocess communication.

• Idea — each is an abstract/simplified version of problems o/s designers

actually need to solve. Also a good way to compare ease-of-use of various

synchronization mechanisms.

• Examples so far — mutual exclusion, bounded buffer.

• Other examples sometimes described in silly anthropomorphic terms, but

underlying problem is a simplified version of something “real”.

Slide 4

Dining Philosophers Problem

• Scenario (originally proposed by Dijkstra, 1972):

– Five philosophers sitting around a table, each alternating between thinking

and eating.

– Between every pair of philosophers, a fork; philosopher must have two

forks to eat.

– So, neighbors can’t eat at the same time, but non-neighbors can.

• Why is this interesting or important? It’s a simple example of something more

complex than mutual exclusion — multiple shared resources (forks),

processes (philosophers) must obtain two resources together. (Why five?

smallest number that’s “interesting”.)

CSCI 3323 October 6, 2014

Slide 5

Dining Philosophers — Naive Solution

• Naive approach — we have five mutual-exclusion problems to solve (one per

fork), so just solve them.

• Does this work? No — deadlock possible.

Slide 6

Dining Philosophers — Simple Solution

• Another approach — just use a solution to the mutual exclusion problem to let

only one philosopher at a time eat.

• Does this work? Well, it “works” w.r.t. meeting safety condition and no

deadlock, but it’s too restrictive.

CSCI 3323 October 6, 2014

Slide 7

Dining Philosophers — Dijkstra Solution

• Another approach — use shared variables to track state of philosophers and

semaphores to synchronize.

• I.e., variables are

– Array of five state variables (states[5]), possible values

thinking, hungry, eating. Initially all thinking.

– Semaphore mutex, initial value 1, to enforce one-at-a-time access to

states.

– Array of five semaphores self[5], initial values 0, to allow us to make

philosophers wait.

• And then the code is somewhat complex . . .

Slide 8

Dining Philosophers — Code

• Shared variables as on previous slide.

Pseudocode for philosopher i:
while (true) {

think();

down(mutex);

state[i] = hungry;

test(i);

up(mutex);

down(self[i]);

eat();

down(mutex);

state[i] = thinking;

test(right(i));

test(left(i));

up(mutex);

}

Pseudocode for function:
void test(i)

{

if ((state[left(i)] != eating) &&

(state[right(i)] != eating) &&

(state[i] == hungry))

{

state[i] = eating;

up(self[i]);

}

}

CSCI 3323 October 6, 2014

Slide 9

Dining Philosophers — Dijkstra Solution Works?

• Could there be problems with access to shared state variables?

• Do we guarantee that neighbors don’t eat at the same time?

• Do we allow non-neighbors to eat at the same time?

• Could we deadlock?

• Does a hungry philosopher always get to eat eventually?

Slide 10

Dining Philosophers — Chandy/Misra Solution

• Original solution allows for scenarios in which one philosopher “starves”

because its neighbors alternate eating while it remains hungry.

• Briefly, we could improve this by maintaining a notion of “priority” between

neighbors, and only allow a philosopher to eat if (1) neither neighbor is eating,

and (2) it doesn’t have a higher-priority neighbor that’s hungry. After a

philosopher eats, it lowers its priority relative to its neighbors.

CSCI 3323 October 6, 2014

Slide 11

Other Classical Problems

• Readers/writers (in textbook).

• Sleeping barber, drinking philosophers, . . .

• Advice — if you ever have to solve problems like this “for real”, read the

literature . . .

Slide 12

Review — Processes and Context Switches

• Recall idea behind process abstraction — make every activity we want to

manage a “process”, and run them “concurrently”.

• Apparent concurrency provided by interleaving. (Some) true concurrency

provided by multiple cores/processors.

• To make this work — process table, ready/running/blocked states, context

switches.

• Context switches triggered by interrupts — I/O, timer, system call, etc.

• On interrupts, interrupt handler processes interrupt, and then goes back to

some process — but which one?

CSCI 3323 October 6, 2014

Slide 13

Which Process To Run Next?

• Deciding what process to run next — scheduler/dispatcher, using “scheduling

algorithm”.

• When to make scheduling decisions?

– When a new process is created.

– When a running process exits.

– When a process becomes blocked (I/O, semaphore, etc.).

– After an interrupt.

• One possible decision — “go back to interrupted process” (e.g., after I/O

interrupt).

Slide 14

Scheduler Goals

• Importance of scheduler can vary; extremes are

– Single-user system — often only one runnable process, complicated

decision-making may not be necessary (though still might sometimes be a

good idea).

– Mainframe system — many runnable processes, queue of “batch” jobs

waiting, “who’s next?” an important question.

– Servers / workstations somewhere in the middle.

• First step is to be clear on goals — want to make “good decisions”, but what

does that mean? Typical goals for any system:

– Fairness — similar processes get similar service.

– Policy enforcement — “important” processes get better service.

– Balance — all parts of system (CPU, I/O devices) kept busy (assuming

there is work for them).

CSCI 3323 October 6, 2014

Slide 15

Aside — Terminology

• Discussion often in term of “jobs” — holdover from mainframe days, means

“schedulable piece of work”.

• Processes usually alternate between “CPU bursts” and I/O, can be

categorized as “compute-bound” (“CPU-bound”) or “I/O bound”.

• Scheduling can be “preemptive” or “non-preemptive”.

Slide 16

Scheduler Goals By System Type

• For batch (non-interactive) systems, possible goals (might conflict):

– Maximize throughput — jobs per hour.

– Minimize turnaround time.

– Maximize CPU utilization.

Preemptive scheduling may not be needed.

• For interactive systems, possible goals:

– Minimize response time.

– Make response time proportional (to user’s perception of task difficulty).

Preemptive scheduling probably needed.

• For real-time systems, possible goals:

– Meet time constraints/deadlines.

– Behave predictably.

CSCI 3323 October 6, 2014

Slide 17

Scheduling Algorithms

• Many, many scheduling algorithms, ranging from simple to not-so-simple.

• Point of reviewing lots of them? notice how many ways there are to solve the

same problem (“who should be next?”), strengths/weaknesses of each.

Slide 18

Minute Essay

• Would you be okay with rescheduling the midterm, for Monday after fall break

(10/20) or Wednesday (10/22)?

