CSCI 3323 (Principles of Operating Systems), Fall 2015

Homework 2

Credit: 80 points.

1 Reading

Be sure you have read Chapter 2.

2 Problems

Answer the following questions. You may write out your answers by hand or using a word processor
or other program, but please submit hard copy, either in class or in one of my mailboxes (outside
my office or in the ASO).

1. (5 points) If you were designing data structures for a process table and a thread table, say
whether you would include the following in the process table, the threads table, or both, and
briefly explain why.

e A place to save CPU registers.

e A place to save information about what memory is owned by the process or thread.

2. (5 points) In class we discussed a proposed solution to the mutual-exclusion problem based
on disabling interrupts, and rejected it because it doesn’t work for systems with more than one
CPU. For a system with a single CPU, however, this could be an acceptable solution, especially
if the critical region is short. Write pseudocode for an implementation of semaphores for a
single-CPU system that might not have a TSL instruction but does have library functions
enable_int() and disable_int() to enable and disable interrupts respectively. (IL.e., say
what variables you would need for each semaphore, and give pseudocode for up () and down().)

3. (10 points) Solve the dining philosophers problem with monitors rather than semaphores.
(Despite what I said in class about reading the literature, for this assignment do not look for
a solution online or in another book; this is a problem you can and should try to solve just
based on what we’ve done in this class.)

4. (10 points) Restrooms are usually designated as men-only or women-only, but this requires
having two restrooms if everyone is to be accommodated. A less expensive approach consistent
with cultural norms in the U.S. would be to have one restroom with a sign on the door that
indicates its current state — empty, in use by at least one woman, or in use by at least one
man. If it is empty, either a man or a women may enter; if it is occupied, a person of the same
sex may enter, but a person of the opposite sex must wait until it is empty. Write pseudocode
for four functions to implement this approach: woman enter, man_enter, woman leave, and
man_leave, to be used by the following pseudocode:

/* woman process */
while (TRUE) {
woman_enter () ;

CSCI 3323 Homework 2 Fall 2015

use_restroom() ;
woman_leave();
do_other_stuff();
}
/* man process */
while (TRUE) {
man_enter();
use_restroom() ;
man_leave() ;
do_other_stuff();
}

You can use any of the synchronization mechanisms we have talked about (shared variables,
semaphores, monitors, or even message passing).

5. (10 points) Five batch jobs (call them A through E) arrive at a computer center at almost
the same time, in the order shown below. Their estimated running times (in minutes) and
priorities are as follows, with 5 indicating the highest priority:

job | running time | priority
A 10 3
B 6 5
C 2 2
D 4 1
E 8 4

For each of the following scheduling algorithms, determine the turnaround time for each job
and the average turnaround time. Assume that all jobs are completely CPU-bound (i.e., they
do not block). (Before doing this by hand, decide how much of programming problem 2 you
want to do.)

e First-come, first-served (run them in alphabetic order by job name).
Shortest job first.

e Round robin, using a time quantum of 1 minute.
e Round robin, using a time quantum of 2 minutes.

e Preemptive priority scheduling.

6. (10 points) Suppose that a scheduling algorithm favors processes that have used the least
amount of processor time in the recent past. Why will this algorithm favor I/O-bound
processes yet not permanently starve CPU-bound processes, even if there is always an I1/O-
bound process ready to run?

3 Programming Problems

Do the following programming problems. You will end up with at least one code file per prob-
lem. Submit your program source (and any other needed files) by sending mail to bmassing@cs.
trinity.edu, with each file as an attachment. Please use a subject line that mentions the course
number and the assignment (e.g., “csci 3323 homework 2”). You can develop your programs on

CSCI 3323 Homework 2 Fall 2015

any system that provides the needed functionality, but I will test them on one of the department’s
Linux machines, so you should probably make sure they work in that environment before turning
them in.

1. (20 points) The starting point for this problem is a simple implementation of the mutual
exclusion problem in C with POSIX threads m-e-problem.c'. Each thread executes a loop
similar to the one presented in class for this problem, except that:

e Rather than looping forever, each thread makes a finite number of trips through the
loop.

e The critical region is represented by code to print some messages and sleep for a random
interval.

e The non-critical region is represented by code to sleep for a random interval.

Currently no attempt is made to ensure that only one thread at a time is in its critical region,
and if you run it you will see that in fact it frequently happens that all the threads are in
their critical region at the same time. Your mission is to correct this.

Start by compiling the program, running it, and observing its behavior. To compile with gcc,
you will need the extra flag -pthread and also -std=c99, e.g.,

gcc -Wall -std=c99 -pthread m-e-problem.c

(Or download this Makefile? and type make m-e-problem.) The program requires several
command-line arguments, described in comments at the top of the code. (If you have trouble
remembering the order, notice that the program prints a meant-to-be-helpful usage message
if run with no arguments.)

You are to produce two corrected versions of this program:

e The first version should use shared variables only and one of the following algorithms:

— Strict alternation, extended to work for an arbitrary number of threads. (No, this
isn’'t a perfect solution, but it does enforce the “one at a time” condition.)

— Peterson’s algorithm, for two threads only. For extra credit, research and implement
a variation that works for more than two threads. Cite a source for your solution
if appropriate — e.g., “I found pseudocode for this solution at the following Web
site.” Or look up and implement Leslie Lamport’s bakery algorithm.

e The second version should use one of the following sets of library functions:

— The POSIX threads mutex functions. man pthread mutex_init is a good starting
point for finding out about these functions.

— The POSIX threads semaphore functions. man sem_init is a good starting point
for finding out about these functions.

Places in the program that should change are marked with “TODO” comments. You should
not need to add much code. Confirm that your two improved versions behave as expected,

Mttp://www.cs.trinity.edu/~bmassing/Classes/CS3323_2015fall/Homeworks/HW02/Problems/
m-e-problem.c
*nttp://wuw.cs.trinity.edu/~bmassing/Classes/CS3323_2015fall/Homeworks/HW02/Problems/Makefile

CSCI 3323 Homework 2 Fall 2015

i.e., when one thread starts its critical region no other thread can start its critical region until
the first one finishes.

NOTE about shared variables: Optimizing compilers play a lot of tricks to reduce actual
accesses to memory, as do most processors. What this means for multithreaded programs is
that it is very difficult to guarantee that changes made to a shared variable in one thread are
visible to other threads. Declaring shared variables volatile avoids at least some compile-
time optimizations but does not provide any guarantees about what will happen at runtime,
especially if there are multiple processors. For the latter, what is needed is a “memory fence”,
i.e., a way of specifying that at a particular point in the program all memory reads and writes
have completed. As far as I know there is no portable way to achieve this in C99; one
must fall back on compiler- or processor-specific code. The starter code includes a function
memory_fence that invokes a gce-specific function providing a memory fence and recommends
its use in the functions to begin and end the critical region. (Disclaimer: At one time the
version of this function present on our classroom/lab machines apparently did nothing! This
may be a bug in gcc, and whether is has been fixed I do not know. My sample solutions seem
to work correctly anyway. If your code seems correct to you but does not work, please ask
for help.) Note that some library functions for synchronization (e.g., the ones included with
POSIX threads) incorporate this functionality as well.

2. (10 points)

The starting point for this problem is a C++ program scheduler.cpp? that simulates execution
of a scheduler, i.e., generates solutions to problems such as the one in the written part of this
assignment. Comments describe input and desired output. Currently the program simulates
only the FCFS algorithm. Your mission is to make it simulate one or more of the other
algorithms mentioned in the written problem (FCFS, SJF, round robin using time quantums
of 1 minute and 2 minutes, and preemptive priority scheduling). You will get full credit for
simulating one algorithm, extra points for simulating additional algorithms.

e Sample input?.

e Output for sample input®.

I chose C++ for the starter code because I hope all of you have had at least some exposure
to C++, and this might be a good opportunity for you to dust off that skill. The starter
code also makes use of some library classes (string and vector) that I think most of you
have used but some of you may not have. string is functionally pretty similar to strings in
languages such as Java and Scala; vector represents a templated expandable array (i.e., one
with a type parameter that lets you specify the type of elements in the array). I'm cautiously
optimistic that between the starter code, this toy example® of using vector, and what you
can find on the Web about these classes (the Wikipedia articles seem okay), you will be able

Shttp://www.cs.trinity.edu/~bmassing/Classes/CS3323_2015fall/Homeworks/HW02/Problems/scheduler/
scheduler. cpp

‘http://www.cs.trinity.edu/~bmassing/Classes/CS3323_2015fall/Homeworks/HW02/Problems/scheduler/
sample-in.txt

"http://www.cs.trinity.edu/~bmassing/Classes/CS3323_2015fall/Homeworks/HW02/Problems/scheduler/
sample-out.txt

Shttp://www.cs.trinity.edu/~bmassing/Classes/CS3323_2015fall/Homeworks/HW02/Problems/scheduler/
vector-example.cpp

CSCI 3323 Homework 2 Fall 2015

to use them to implement your choice of scheduling algorithm(s). If you don’t remember, or
didn’t learn, how to compile C++ from the command line in Linux:

g++ -Wall -pedantic scheduler.cpp

