
CSCI 3323 (Principles of Operating Systems), Fall 2015

Homework 5

Credit: 20 points.

1 Reading

Be sure you have read (or at least skimmed) Chapters 5, 6, and 9.

2 Problems

Answer the following questions. You may write out your answers by hand or using a word processor
or other program, but please submit hard copy, either in class or in one of my mailboxes (outside
my office or in the ASO).

1. (5 points) Consider the following two I/O devices. For each device, say whether you think
programmed I/O or interrupt-driven I/O makes the most sense, and justify your answer,
preferably with data such as a comparison of times involved. (Hint: Consider the time re-
quired for interrupt processing versus the time needed for the actual input/output operation.)

(a) A printer that prints at a maximum rate of 400 characters per second, connected to
a computer system in which writing to the printer’s output register takes essentially
no time, and using interrupt-driven I/O means that each character printed requires an
interrupt that takes a total of 50 microseconds (i.e., 50× 10−6 seconds) to process.

(b) A simple memory-mapped video terminal (output only), connected to a system where
interrupts take a minimum of 100 nsec to process and copying a byte into the terminal’s
video RAM takes 10 nsec.

2. (5 points) Student H. Hacker installs a new disk driver that its author claims improves
performance by using the elevator algorithm and also processing requests for multiple sectors
within a cylinder in sector order. Hacker, very impressed with this claim, writes a program to
test the new driver’s performance by reading 10,000 blocks spread randomly across the disk.
The observed performance, however, is no better than what would be expected if the driver
used a first-come first-served algorithm. Why? What would be a better test of whether the
new driver is faster? (Hint: The test program reads the blocks one at a time. Think about
how many requests will be on the disk driver’s queue at any one time.)

3. (5 points) Suppose you are designing an electronic funds transfer system, in which there will
be many identical processes that work as follows: Each process accepts as input an amount
of money to transfer, the account to be credited, and the account to be debited. It then locks
both accounts (one at a time), transfers the money, and releases the locks when done. Many
of these processes could be running at the same time. Clearly a design goal for this system
is that two transfers that affect the same account should not take place at the same time,
since that might lead to race conditions. However, no problems should arise from doing a
transfer from, say, account A to account B at the same time as a transfer from account C to
account D, so another design goal is for this to be possible. The available locking mechanism

1



CSCI 3323 Homework 5 Fall 2015

is fairly primitive: It acquires locks one at a time, and there is no provision for testing a lock
to find out whether it is available (you must simply attempt to acquire it, and wait if it’s not
available). A friend proposes a simple scheme for locking the accounts: First lock the account
to be credited; then lock the account to be debited. Can this scheme lead to deadlock? If
you think it cannot, briefly explain why not. If you think it can, first give an example of a
possible deadlock situation, and then design a scheme that avoids deadlocks, meets the stated
design goals, and uses only the locking mechanism just described.

4. (5 points) Programs or program updates sometimes come packaged as “self-extracting
archives”, which combine the files that make up the archive with a program to extract them.
Compare this with other ways of packaging programs and updates (e.g., as RPMs or tarballs)
with regard to security and any other factors that seem relevant.

2


