
CSCI 3323 September 2, 2015

Slide 1

Administrivia

• Anything to discuss with regard to the textbook?

Slide 2

What Is An Operating System? (Review)

• Definition by example:

– Recent: Windows, Linux, UNIX, iOS, OS X (Mac), . . .

– Older: MULTICS, VMS, MVS, VM/370, . . .

– (Also special-purpose o/s’s for special-purpose hardware — e.g.,

video-conferencing system.)

• Definition(s) from operating systems textbooks:

– Something that provides “virtual machine” for application programs and

users (“top down”).

– Something that manages computer’s resources (“bottom up”).

• Another view — key part of bridging gap between what hardware can do (not

much, but very fast) and what users want.

CSCI 3323 September 2, 2015

Slide 3

What The Hardware Can Do

• CPU: fetch machine instruction from memory, execute; repeat.

• Disk: read data from / write data to location on disk.

• And so forth — very primitive.

Slide 4

What The Software Must Do

• Programs students usually write in CS1, CS2:

– Define and manipulate data structures.

– Do arithmetic/logical calculations.

– Read stdin / write stdout.

– Call GUI/graphics library routines.

• The magic cloud (operating system):

– Read from keyboard, write to screen.

– Manage what’s on screen — windows, taskbar, etc.

– Run multiple applications “at the same time”.

– Manage disk contents — files, directories/folders.

– Share the machine with other users.

CSCI 3323 September 2, 2015

Slide 5

Why Review History?

• To understand roots/development of current operating systems.

• As a way of getting many perspectives on “what do we want an o/s to do, and

how do we make it do that?”

• Because history is intrinsically interesting? Try to imagine what using some of

those early machines might have been like.

• (To allow the instructor to relive the days of his/her youth?)

Slide 6

The Early Days (1940s)

• Programming done by making physical connections on a plugboard (!).

• Better than no computer at all, but tedious and inefficient!

• Example: the ENIAC (picture on “links” page).

CSCI 3323 September 2, 2015

Slide 7

The Early Days (1940s – 1950s)

• Key improvements: stored-program concept, punch cards.

• Programming done by encoding machine language into cards.

• Program included code to start up computer, read rest of program into

memory, do all input and output, etc. (no operating system).

• One program at a time, machine operated by programmer.

• Better, but still tedious and inefficient!

Slide 8

The Early Days (1950s)

• Key improvements: assemblers and compilers, libraries of commonly-used

code, specialists to run machine (operators).

• Programming done in assembly language (or early high-level language),

punched into cards.

• Separate steps to translate to machine language, execute.

• One program at a time, but machine operated by specialist.

• Less tedious, less inefficient.

• Still cumbersome for programmers, CPU idle between steps.

CSCI 3323 September 2, 2015

Slide 9

Batch Systems (1950s)

• Key improvement: “batch” idea — automate transitions between steps

(translate program, execute, translate next program, etc.).

• How to make this work? separate input by “control cards”, write primitive

operating system to interpret them, manage transitions.

• Less inefficient, but I/O devices slow, so CPU idle a lot — still one program at

a time.

• Still cumbersome for programmers — punch program into cards, give to

operator, wait for output.

Slide 10

Control Cards — Example

//jobname JOB acctno,name,

//stepname EXEC PGM=compiler_name,PARM=(options)

//STEPLIB DD DSNAME=path_for_compiler

//SYSUT1 DD UNIT=SYSDA,SPACE=(subparms)

//SYSPRINT DD SYSOUT=A

//SYSLIN DD DSNAME=object_code,UNIT=SYSDA,

// DISP=(MOD,PASS),SPACE=(subparms)

//SYSIN DD *
source code

/*
//stepname EXEC PGM=load-and-go

....

.... input data for program

CSCI 3323 September 2, 2015

Slide 11

Multiprogramming Systems (1960s – ?)

• Key improvement: “multiprogramming” — more than one program in memory,

so when one has to wait another can run.

• How to make this work? requires much more complex operating system —

must share memory and I/O devices among programs, switch between them,

etc.

• Efficient use of hardware.

• Still cumbersome for programmers — no real changes here.

• Example: IBM mainframe (1964) and peripherals (pictures on “links” page).

Slide 12

Timesharing Systems (1960s – ?)

• Key improvements: “interactive” users (using text terminals), utility programs

to support them (shells, text editors, etc.).

• How to make this work? like multiprogramming, but now programs sharing

memory are interactive users wanting fast response.

• Efficient use of hardware.

• Much less cumbersome for program development!

• Example: IBM terminal (picture on “links” page).

CSCI 3323 September 2, 2015

Slide 13

Personal Computers (1980s – ?)

• Similar evolution of operating systems — initially very simple, gradually

becoming more complex/capable.

• Features from mainframes adopted as hardware permitted.

• A key difference — emphasis on user convenience rather than efficient use of

hardware.

Slide 14

Evolution of Operating Systems, Recap

• Increasing hardware capability.

• Increasing o/s functionality and complexity — from simple program loader to

complex multitasking system.

• Parallels between evolution of mainframe o/s and PC o/s. (Similar evolution

may be happening with o/s for “smart phones”?)

CSCI 3323 September 2, 2015

Slide 15

Minute Essay

• What’s the most primitive and/or cumbersome system you’ve personally

used? (I mean system-as-a-whole here, not specific tools.)

