
CSCI 3323 September 14, 2015

Slide 1

Administrivia

• Programming problem added to Homework 1. Written problems still due

Wednesday (hard-copy preferred); programming problem due next Monday

(submit by e-mail).

• First quiz next Monday. Topic(s) from Chapter 1.

Slide 2

Minute Essay From Last Lecture

• (Review.)

CSCI 3323 September 14, 2015

Slide 3

System Calls

• Recall that some things can/should only be done by o/s (e.g., I/O), and

hardware can help enforce that.

• But application programs need to be able to request these services. How can

we make this work? System calls, discussed previously. Mechanism similar to

interrupts, so . . .

Slide 4

Interrupts

• Processing of TRAP instructions is similar to interrupts, so worth mentioning

here:

• Very useful to have a way to interrupt current processing when an unexpected

or don’t-know-when event happens — error occurs (e.g., invalid operation),

I/O operation completes.

• On interrupt, goal is to save enough of current state to allow us to restart

current activity later:

– Save old value of program counter.

– Disable interrupts.

– Transfer control to fixed location (“interrupt handler” or “interrupt vector”) —

normally o/s code that saves other registers, re-enables interrupts, decides

what to do next, etc.

CSCI 3323 September 14, 2015

Slide 5

Example: System Calls in MIPS

• MIPS instruction set includes syscall instruction that generate a

system-call exception. MIPS interrupts/exceptions use special-purpose

registers to hold type of exception and address of instruction causing

exception. Before issuing syscall program puts value indicating which

service it wants in register $v0. Parameters for system call are in other

registers (can be different ones for different calls).

• Interrupt handler for system calls looks at $v0 to figure out what service is

requested, other registers for other parameters.

• When done, it uses rfe instruction to restore calling program’s environment,

then returns to caller using value from EPC register.

Slide 6

Example: System Calls in MIPS/SPIM

• SPIM simulator — a primitive o/s! — defines a short list of system calls.

Example code fragment:

la $a0, hello

li $v0, 4 # "print string" syscall

syscall

....

.data

hello: .asciiz "hello, world!\n";

CSCI 3323 September 14, 2015

Slide 7

Command Shells

• History — early batch systems had to interpret “control cards”; modern

equivalent is to interpret “commands” (usually interactive).

• Not technically part of o/s, but important and related.

• Typical shell functionality:

– Invocation of programs (optionally in background).

– Input/output redirection.

– Program-to-program connections (pipes).

– “Wildcard” capability.

– Scripting capability.

• Examples — MS-DOS command.com; UNIX sh, bash, csh, tcsh,

ksh, zsh, . . .

Slide 8

Homework 1 Programming Problem

• The idea is to write a very simple shell based on the sort-of-pseudocode in

the textbook, using fork and execve system calls.

• To do this, you have to solve a couple of problems:

– Figure out how to use system-call library functions fork and execve.

Overview on next slide; details in man pages.

– Deal with string processing in C (or C++). (This year I’m supplying starter

code.)

CSCI 3323 September 14, 2015

Slide 9

Homework 1 Programming Problem, Continued

• fork() function creates and starts a new process. Both original (“parent”)

and new (“child”) processes execute the same program, continuing at

whatever follows call to fork(). Return value from function says which

process is which.

• execve() function discards current program and loads and starts a new

one. If it fails, execution continues with whatever follows; otherwise whatever

follows is ignored!

Slide 10

Compiler(s) on the Classroom/Lab Machines

• For the homework you will be writing a C or C++ program. I will test with the

appropriate GNU compiler on the lab machines, so you should probably do so

too.

• For what it’s worth, the current (and just-previous) “build” running on the

classroom/lab machines includes multiple versions of gcc. If you’re using

one of the non-default ones (perhaps because it’s required for some other

course, such as anything Dr. Lewis teaches using C++), it would be helpful to

tell me so when you turn something in. More information about all of this on

request.

CSCI 3323 September 14, 2015

Slide 11

Sidebar: C/C++ Programming Advice

• I strongly recommend always compiling with flags to get extra warnings.

There are lots of them, but you can get a lot of mileage just from -Wall.

Add -pedantic to flag nonstandard usage.

Warnings are often a sign that something is wrong. Sometimes the problem is

a missing #include. man pages tell you if you need one.

• If you want to write “new” C (including C++-style comments), you may need to

add -std=c99.

• If typing all of these gets tedious, consider using a simple makefile. Create a

file called Makefile containing the following (the first line for C, the second

for C++):

CFLAGS = -Wall

CXXFLAGS = -Wall

and then compile hello.c to hello by typing make hello, or

Slide 12

similarly for hello.cpp.

CSCI 3323 September 14, 2015

Slide 13

Minute Essay

• It appears from the pseudocode for the simple command shell that the shell

starts a new process for each command. Why do you think it’s done that way,

rather than simply calling the command’s main function?

Slide 14

Minute Essay Answer

• A reason that occurs to me is that it protects the shell itself from buggy or

malicious commands.

