
CSCI 3323 October 14, 2015

Slide 1

Administrivia

• Draft version of homework 2 on the Web. Questions probably will not change

but point values might. Written problems due in a week, programming

problem(s) the following Monday. (Whether there will be just the one, or a

second one — I will let you know when I hear from more of you about

language(s).)

• Reminder: Quiz 2 next Monday. Topics from chapter 2, not including

scheduling algorithms.

Slide 2

Scheduling — Recap/Review

• Deciding what process to run next — scheduler/dispatcher, using “scheduling

algorithm”.

• When to make scheduling decisions?

– When a new process is created.

– When a running process exits.

– When a process becomes blocked (I/O, semaphore, etc.).

– After an interrupt.

• One possible decision — “go back to interrupted process” (e.g., after I/O

interrupt). But there are other choices.



CSCI 3323 October 14, 2015

Slide 3

Aside — Terminology

• Discussion often in term of “jobs” — holdover from mainframe days, means

“schedulable piece of work”.

• Processes usually alternate between “CPU bursts” and I/O, can be

categorized as “compute-bound” (“CPU-bound”) or “I/O bound”.

• Scheduling can be “preemptive” or “non-preemptive”.

Slide 4

Scheduler Goals By System Type

• For batch (non-interactive) systems, possible goals (might conflict):

– Maximize throughput — jobs per hour.

– Minimize turnaround time.

– Maximize CPU utilization.

Preemptive scheduling may not be needed.

• For interactive systems, possible goals:

– Minimize response time.

– Make response time proportional (to user’s perception of task difficulty).

Preemptive scheduling probably needed.

• For real-time systems, possible goals:

– Meet time constraints/deadlines.

– Behave predictably.



CSCI 3323 October 14, 2015

Slide 5

Scheduling Algorithms

• Many, many scheduling algorithms, ranging from simple to not-so-simple.

• Point of reviewing lots of them? notice how many ways there are to solve the

same problem (“who should be next?”), strengths/weaknesses of each.

Slide 6

First Come, First Served (FCFS)

• Basic ideas:

– Keep a (FIFO) queue of ready processes.

– When a process starts or becomes unblocked, add it to the end of the

queue.

– Switch when the running process exits or blocks. (I.e., no preemption.)

– Next process is the one at the head of the queue.

• Points to consider:

– How difficult is this to understand, implement?

– What happens if a process is CPU-bound?

– Would this work for an interactive system?



CSCI 3323 October 14, 2015

Slide 7

Shortest Job First (SJF)

• Basic ideas:

– Assume work is in the form of “jobs” with known running time, no blocking.

– Keep a queue of these jobs.

– When a process (job) starts, add it to the queue.

– Switch when the running process exits (i.e., no preemption).

– Next process is the one with the shortest running time.

• Points to consider:

– How difficult is this to understand, implement?

– What if we don’t know running time in advance?

– What if all jobs are not known at the start?

– Would this work for an interactive system?

– What’s the key advantage of this algorithm?

Slide 8

Round-Robin Scheduling

• Basic ideas:

– Keep a queue of ready processes, as before.

– Define a “time slice” — maximum time a process can run at a time.

– When a process starts or becomes unblocked, add it to the end of the

queue.

– Switch when the running process uses up its time slice, or it exits or

blocks. (I.e., preemption allowed!)

– Next process is the one at the head of the queue.

• Points to consider:

– How difficult is this to understand, implement?

– Would this work for an interactive system?

– How do you choose the time slice?



CSCI 3323 October 14, 2015

Slide 9

Priority Scheduling

• Basic ideas:

– Keep a queue of ready processes, as before.

– Assign a priority to each process.

– When a process starts or becomes unblocked, add it to the end of the

queue.

– Switch when the running process exits or blocks, or possibly when a

process starts. (I.e., preemption may be allowed.)

– Next process is the one with the highest priority.

• Points to consider:

– What happens to low-priority processes? (So, maybe we should change

priorities sometimes?)

– How do we decide priorities? (external considerations versus internal

characteristics)

Slide 10

Shortest Remaining Time Next

• Basic idea — variant on SJF:

– Assume that for each process (job), we know how much longer it will take.

– Keep a queue of ready processes, as before; add to it as before.

– Switch when the running process exits or a new process starts. (I.e.,

preemption allowed — requires recomputing time left for preempted

process.)

– Next process is the one with the shortest time left.

• Points to consider:

– How does this compare with SJF?



CSCI 3323 October 14, 2015

Slide 11

Multiple-Queue Scheduling

• Basic idea — variant on priority scheduling:

– Divide processes into “priority classes”.

– When picking a new process, pick one from the highest-priority class with

ready processes.

– Within a class, use some other algorithm to decide (round-robin, e.g.).

– Optionally, periodically lower processes’ priorities.

Slide 12

Some Other Scheduling Algorithms

• Guaranteed scheduling.

“Guarantee” each process (of N) 1/N of the CPU cycles; (try to) schedule to

make this true.

Calculate, for each process, fraction of the time it has had the CPU in its

lifetime, fraction it “should” have had; choose process for which actual time /

entitled time is smallest.

• Lottery scheduling.

Give each process one or more “lottery tickets” — more or fewer depending

on its priority (so to speak); pick one at random to decide who’s next.

• Fair-share scheduling.

Factor in process’s owner in deciding which process to pick. I.e., if two “equal”

users, schedule processes such that user A’s processes get about as much

time as those of user B.



CSCI 3323 October 14, 2015

Slide 13

Scheduling in Real-Time Systems

• “Real-time system” — system in which events must (“hard real time”) or

should (“soft real time”) be handled by some deadline. Often events to be

handled are periodic, and we know how often they arrive and how long they

take to process.

• Role of scheduler in such systems could be critical.

• An interesting question — sometimes getting everything scheduled on time is

impossible (example?). If we know periodicity and time-to-handle of all types

of events, can we decide this? (Yes — general formula in textbook; can be

interesting to work through details.)

• Complex topic; see chapter 7 for more info.

Slide 14

Scheduling and Threads

• If system uses both processes and threads, we now possibly have an

additional level of scheduling.

• Details depend on whether threads are implemented in user space or kernel

space:

– In user space — runtime system that manages them must do scheduling,

and without the benefit of timer interrupts.

– In kernel space — scheduling done at o/s level, so context switches are

more expensive, but timer interrupts are possible, etc.



CSCI 3323 October 14, 2015

Slide 15

What Do Real Systems Use?

• Traditional UNIX: two-level approach (upper level to swap processes in/out of

memory, lower level for CPU scheduling), using multiple-queue scheduling for

CPU scheduling. See chapter 10 for details.

• Linux: facilities for soft real-time scheduling and “timesharing” scheduling,

with the latter a mix of priority and round-robin scheduling. See chapter 10 for

details. As of kernel version 2.6.23, replaced with “Completely Fair

Scheduler”, which sounds like what Tanenbaum calls “guaranteed

scheduling”.

• Windows NT/2000/Vista: multiple-queue scheduling of threads, with

round-robin for each queue.

• MVS (IBM mainframe): three-level scheme with lots of options for

administrator(s) to define complex policies.

Slide 16

One More Scheduling-Related Topic

• A question I used to use as homework:

Recall that some proposed solutions to the mutual-exclusion problem (e.g.,

Peterson’s algorithm) involve busy waiting. Do such solutions work if priority

scheduling is being used and one of the processes involved has higher

priority than the other(s)? Why or why not? How about if round-robin

scheduling is being used? Why or why not? Notice that a process can be

interrupted while in its critical region; if that happens, it is considered to still be

in its critical region, and other processes wanting to be in their critical regions

are supposed to busy-wait.



CSCI 3323 October 14, 2015

Slide 17

One More Scheduling-Related Topic, Continued

• Yes, with priority scheduling, a solution involving busy-waiting can fail (“priority

inversion”, in text). Not so with round-robin.

Slide 18

Sidebar — Simulating Scheduling Algorithms

• Can be helpful in understanding how these algorithms work to simulate what

they do given a particular sequence of inputs.

• Example — batch system with the following jobs.

job ID running time arrival time

A 6 0

B 4 0

C 10 0

D 2 2

Asked to compute turnaround times for all jobs using FCFS, what would you

do . . .



CSCI 3323 October 14, 2015

Slide 19

Recap — Scheduling Algorithms

• Main idea — decide which process to run next (when running process exits,

becomes blocked, or is interrupted).

• Many possibilities, ranging from simple to complex. Real systems seem to

use hybrid strategies.

• How to choose one?

– Be clear on goals.

– Maybe evaluate some possibilities to see which one(s) meet goals —

analytic or experimental evaluation.

– Build in some tuning knobs — “separate policy from mechanism”.

Slide 20

Minute Essay

• Suppose you have a batch system with the following jobs.

job ID running time arrival time

A 6 0

B 4 0

C 10 0

D 2 2

Compute turnaround times for all jobs using SJF.



CSCI 3323 October 14, 2015

Slide 21

Minute Essay Answer

• Solution:

job ID start time stop time turnaround time (SJF)

A 6 12 12

B 0 4 4

C 12 22 22

D 4 6 4


