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Administrivia

• Next quiz in a week.

• Midterms graded.

• (Review minute essay from last time.)

• (You should be reading chapter 3, pretty much the whole chapter. I will add

specific sections to the schedule page.)
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Review — Registers

• (Answers to questions on HW2, exam questions, minute essay suggest that

some students may not remember what I hoped they’d have learned and

retained from the prerequisite course.)

• “Registers” are logically (and as far as I know physically) part of “the CPU”,

“the processor”, etc. Possibly real systems are more complex these days, but

in the simplified model we’re using, each processor/CPU has its own set of

registers, not shared with others. Access very fast compared to access of

RAM.

• Typically registers are divided into ones used for computation (often called

“general purpose”) and ones used for other purposes (often called “special

purpose”). Which ones should application programs have access to, and

which might need to be kernel-only? (Think about what assembly-language

programs look like.)
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Paging — Recap

• Idea — divide both address spaces and memory into fixed-size blocks

(“pages” and “page frames”), allow non-contiguous allocation.

• Makes for a much more flexible system but at a cost in complexity — keeping

track of a process’s memory requires a “page table” to be used by both

hardware (MMU) and software (O/S).
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Page Tables — Performance Issues

• One possibility is to keep the whole page table for the current process in

registers. Could possibly use general-purpose registers for this but likely

would not. Should make for fast translation of addresses, but — is this really

feasible for a large table? and what about context switches?

• Another possibility is to keep the process table in memory and just have one

register (probably a special-purpose one) point to it. Cost/benefit tradeoffs

here seem like the opposite of the first scheme, no?

The big downside is slow lookup, though, and that can be improved with a

“translation lookaside buffer” (TLB) — special-purpose cache.
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Large Address Spaces

• Clearly page tables can be big. How to make this feasible?

• One approach — multilevel page tables.

• Another approach — inverted page tables (one entry per page frame).
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Paging and Virtual Memory

• Idea — if we don’t have room for all pages of all processes in main memory,

keep some on disk (“pretend we have more memory than we really do”).

• Or a simpler view: All address spaces live in secondary memory / swap space

/ backing store, and we “page in” as needed (demand paging).

• (Aside: Why are we even bothering? Can’t the processor(s) access disk?

Yes, but . . . )

• Making this work requires help from both hardware (MMU) and software

(operating system).
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Page Fault Interrupts

• We said MMU should generate a “page fault” interrupt for a page that’s not

present in real memory. What happens then? It’s an interrupt, so . . .

• Control goes to an interrupt handler. What should it do? (Are there different

possibilities for what caused the page faults?)
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Page Fault Interrupts, Continued

• One possible cause — an address that’s not valid. You know (sort of) what

happens then . . .

• Another cause — an address that’s valid, but the page is on disk rather than

in real memory. So — do I/O to read it in. Where to put it? If there’s a free

page frame, choice is easy. What if there’s not?
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Finding A Free Frame — Page Replacement Algorithms

• Processing a page fault can involve finding a free page frame. Would be easy

if the current set of processes aren’t taking up all of main memory, but what if

they are? Must steal a page frame from someone. How to choose one?

• Several ways to make choice (as with CPU scheduling) — “page replacement

algorithms”.

• “Good” algorithms are those that result in few page faults. (What happens if

there are many page faults?)

• Choice usually constrained by what MMU provides (though that is influenced

by what would help o/s designers).

• Many choices (no surprise, right?) . . .
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“Optimal” Algorithm

• Idea — if we know for each page when it will next be referenced, choose the

one for which that’s the furthest away.

• Theoretically optimal, though can’t be implemented.

• Useful as a standard of comparison — run program once on simulator to

collect data on page references, again to determine performance with this

“algorithm”. (Not clear that this is really possible with multiprogramming, i.e.,

more than one process active.)
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Sidebar: Page Table Entries, Revisited

• Recall — many architectures’ page table entries contain bits called

“R (referenced) bit” and “M (modified) bit”.

• Idea is that these bits are set by hardware on any memory reference, and

cleared by software (o/s) in some way that’s useful.
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“Not Recently Used” Algorithm

• Idea — choose a page that hasn’t been referenced/modified recently, hoping

it won’t be referenced again soon.

• Implementation — use page table’s R and M bits, group pages into four

classes:

– R = 0, M = 0.

– R = 0, M = 1.

– R = 1, M = 0.

– R = 1, M = 1.

Choose page to replace at random from first non-empty class.

• How good is this? Easy to understand, reasonably efficient to implement,

often gives adequate performance.
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“First In, First Out” Algorithm

• Idea — remove page that’s been there the longest.

• Implementation — keep a FIFO queue of pages in memory.

• How good is this? Easy to understand and implement, no MMU support

needed, but could be very non-optimal.
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“Second Chance” Algorithm

• Idea — modify FIFO algorithm so it only removes the oldest page if it looks

inactive.

• Implementation — use page table’s R and M bits, also keep FIFO queue.

Choose page from head of FIFO queue, but if its R bit is set, just clear R bit

and put page back on queue.

• Variant — “clock” algorithm (same idea, keeps pages in a circular queue).

• How good is this? Easy to understand and implement, probably better than

FIFO.
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“Least Recently Used” (LRU) Algorithm

• Idea — replace least-recently-used page, on the theory that pages heavily

used in the recent past will be heavily used in the near future. (Usually true).

• Implementation:

– Full implementation requires keeping list of pages ordered by time of

reference. Must update this list on every memory reference.

– Only practical with special hardware — e.g.:

Build 64-bit counter C, incremented after each instruction (or cycle).

On every memory reference, store C’s value in PTE.

To find LRU page, scan page table for smallest stored value of C.

(Is 64 bits enough?)

• How good is this? Could be pretty good, but requires hardware we probably

won’t have.
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“Not Frequently Used” (NFU) Algorithm

• Idea — simulate LRU in software.

• Implementation:

– Define a counter for each PTE. Periodically (“every clock-tick interrupt”)

update counter for every PTE with R bit set.

– Choose page with smallest counter.

• How good is this? Reasonable to implement, could be good, but counters

track full history, which might not be a good predictor.
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“Aging” Algorithm

• Idea — simulate LRU in software (like NFU), but give more weight to recent

history.

• Implementation similar to NFU, but increment counters by shifting right and

adding to leftmost bit — in effect, divide previous count by 2 and add bit for

recent references.

• How good is this? Pretty good approximation to LRU, though a little crude,

and limited by size of counter.
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Sidebar: Working Sets

• Most programs exhibit “locality of reference”, so a process usually isn’t using

all its pages.

• A process’s “working set” is the pages it’s using. Changes over time, with size

a function of time and also of how far back we look.
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“Working Set” Algorithm

• Idea — steal / replace page not in recent working set. Define working set by

looking back τ time units (w.r.t. process’s virtual time). Value of τ is a tuning

parameter, to be set by o/s designer or sysadmin.

• Implementation:

– For each entry in page table, keep track of time of last reference.

– When we need to choose a page to replace, scan through page table and

for each entry:

If R = 1, update time of last reference.

Compute time elapsed since last use. If more than τ , page can be

replaced.

– If we don’t find a page to replace that way, pick the one with oldest time of

last use. If a tie, pick at random.

• How good is this? Good, but could be slow.
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“WSClock” Algorithm

• Idea — efficient-to-implement variation of previous algorithm, based on

circular list of pages-in-memory for process. (Carr and Hennessy.)

• Implementation — like previous algorithm, but when we need to pick a page

to replace, go around the circle and:

– If R = 1, update time of last use. Compute time since last use.

– If time since last use is more than τ and M = 1, schedule I/O to write this

page out (so it can maybe be replaced next time — M bit will be cleared

when I/O completes). No need to block yet, though.

– If time since last use is more than τ and M = 0, replace this page.

The idea is to go around the circle until we find a page to replace, then stop.

(If we get all the way around the circle, we’ll pick some page with M = 0.)

• How good is this? Makes good choices, practical to implement, apparently

widely used in practice.
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Minute Essay

• Why is a “good” page replacement algorithm one that generates as few page

faults as possible? (I.e., what happens if there are a lot of page faults?)
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Minute Essay Answer

• The usual result of lots of page faults is that the computer spends more time

doing “paging” (moving data back and forth between memory and disk),

sometimes to the point where it isn’t doing much else.


