
CSCI 3323 November 18, 2015

Slide 1

Administrivia

• Reminder: Homework 3 due today.

• Reminder: Quiz 4 Monday.

• Next homework to be on the Web soon; I will send mail. To be due midweek

after the holiday. Almost surely this one and one more, both shorter than

some previous assignments.

• Grade summaries mailed. Very disappointing overall. What to do — I don’t

know.

Slide 2

Filesystem Implementation — Overview

• Last time we talked about many aspects of filesystem abstraction. After

making decisions about what to implement — how?

• Recall(?) basic organization of disk:

– Master boot record (includes partition table)

– Partitions, each containing boot block and lots more blocks. Abstract view

of access to disk is in terms of reading/writing specified block.

• How to organize/use those “lots more blocks”? Must keep track of which

blocks are used by which files, which blocks are free, directory info, file

attributes, etc., etc.

Typically start with superblock containing basic info about filesystem, then

some blocks with info about free space and what files are there, then the

actual files.



CSCI 3323 November 18, 2015

Slide 3

Implementing Files

• One problem is keeping track of which disk blocks belong to which files.

• No surprise — there are several approaches. (All assume some outside

“directory”-type structure with some information about each file — a starting

block, e.g.)

Slide 4

Implementing Files — Contiguous Allocation

• Key idea — what the name suggests, much like analogous idea for memory

management.

• How well does it work? consider simplicity, speed (both sequential and

random access), possibility of fragmentation (wasted space).

• Widely used long ago, abandoned, but now maybe useful again.



CSCI 3323 November 18, 2015

Slide 5

Implementing Files — Linked-List Allocation

• Key idea — organize each file’s blocks as a linked list, with pointer to next

block stored within block.

• How well does it work? consider simplicity, speed (both sequential and

random access), possibility of fragmentation (wasted space).

Slide 6

Implementing Files — Linked-List Allocation With Table
In Memory

• Key idea — keep linked-list scheme, but use table in memory (File Allocation

Table or FAT) for pointers rather than using part of disk blocks.

• How well does it work? consider simplicity, speed (both sequential and

random access), possibility of fragmentation (wasted space).



CSCI 3323 November 18, 2015

Slide 7

Implementing Files — I-Nodes

• Key idea — associate with each file a data structure (“index node” or i-node)

containing file attributes and disk block numbers, keep in memory.

• How well does it work? consider simplicity, speed (both sequential and

random access), possibility of fragmentation (wasted space).

Slide 8

Filesystem Implementation — Directories

• Many things to consider here — whether to keep attribute information in

directory, whether to make entries fixed or variable size, etc.

• Also consider whether to allow some sort of sharing (making the hierarchy a

directed graph rather than a tree). Different possibilities here; contrast UNIX

“hard links” (in which different directory entries point to a common structure

describing the file) and “soft (symbolic) links” (in which the link is a special

type of file).



CSCI 3323 November 18, 2015

Slide 9

Virtual File Systems

• Apparently many possibilities for implementing filesystem abstraction, with the

usual tradeoffs. Do we have to choose one, or can different types coexist?

The latter . . .

• In Windows, having different filesystems on different logical drives is

managed via drive letters.

• In UNIX, current approach is usually a “virtual file system” — basically, an

extra layer of abstraction (remember the adage about how that can solve any

programming problem).

Slide 10

Log-Structured Filesystems

• Log-structured filesystem — everything is written to log, and only to log. That

sounds impractical, but . . .

• Key idea is that these many disk reads are satified from cache anyway, and

lots of small writes to disk give poor performance, so it makes more sense to

just write (to cache) a log, and periodically save that to disk.

• Not used much, though, because incompatible with other file systems.

Instead . . .



CSCI 3323 November 18, 2015

Slide 11

Journaling Filesystems — Overview

• As we’ll discuss later (and as you may know!) — o/s sometimes doesn’t

perform “write to disk” operations right away (caching).

• One result is likely improved performance. Another is potential filesystem

inconsistency — operations such as “move a block from the free list to a file”

are no longer atomic.

• Idea of journaling filesystem — do something so we can regard updates to

filesystem as atomic.

• To say it another way — record changes-in-progress in log, when complete

mark them “done”.

Slide 12

Journaling Filesystems, Continued

• Can record “data”, “metadata” (directory info, free list, etc.), or both.

• “Undo logging” versus “redo logging”:

– Undo logging: First copy old data to log, then write new data (possibly

many blocks) to disk. If something goes wrong during update, “roll back”

by copying old data from log.

– Redo logging: First write new data to log (i.e., record changes we’re going

to make), then write new data to disk. If something goes wrong during

update, complete the update using data in log.

• A key benefit — after a system crash, we should only have to look at the log

for incomplete updates, rather than doing a full filesystem consistency check.



CSCI 3323 November 18, 2015

Slide 13

Managing Free Space — Free List

• One way to track which blocks are free — list of free blocks, kept on disk.

• How this works:

– Keep one block of this list in memory.

– Delete entries when files are created/expanded, add entries when files are

deleted.

– If block becomes empty/full, replace it.

Slide 14

Managing Free Space — Bitmap

• Another way to track which blocks are free — “bitmap” with one bit for each

block on disk, also kept on disk.

• How this works:

– Keep one block of map in memory.

– Modify entries as for free list.

• Usually requires less space.



CSCI 3323 November 18, 2015

Slide 15

Filesystem Performance

• Access to disk data is much slower than access to memory — seek time plus

rotational delay plus transfer time. (Well, for disks that rotate. Solid-state

disks don’t, but they have their own issues, e.g., limits on number of writes?)

• So, file systems include various optimizations . . .

Slide 16

Improving Filesystem Performance — Caching

• Idea — keep some disk blocks in memory; keep track of which ones are there

using hash table (base hash code on device and disk address).

• When cache is full and we must load a new block, which one to replace?

Could use algorithms based on page replacement algorithms, could even do

LRU accurately — though that might be wrong (e.g., want to keep data blocks

being filled).

• When should blocks be written out?

– If block is needed for file system consistency, could write out right away. If

block hasn’t been written out in a while, also could write out, to avoid data

loss in long-running program.

– Two approaches: “Write-through cache” (Windows) — always write out

modified blocks right away. Periodic “sync” to write out (UNIX).



CSCI 3323 November 18, 2015

Slide 17

Improving Filesystem Performance — Block
Read-Ahead

• Idea — if file is being read sequentially, can read some blocks “ahead”. (Of

course, doesn’t help if file is being read non-sequentially. Decide based on

recent access patterns.)

Slide 18

Improving Filesystem Performance — Reducing Disk
Arm Motion

• Group blocks for each file together — easier if bitmap is used to keep track of

free space. If not grouped together — “disk fragmentation” may affect

performance.

• If i-nodes are being used, place them so they’re fast to get to (and so maybe

we can read an i-node and associated file block together).



CSCI 3323 November 18, 2015

Slide 19

Disk Fragmentation

• Idea — if blocks that make up a file are (mostly) contiguous, faster to read

them all. If not, “disk fragmentation”.

• How likely is disk fragmentation? Depends on filesystem, strategy for

allocating space for files.

• “Defragmenter” utility can be run to correct it. Windows comes with one.

Linux doesn’t. The claim is that UNIX and Linux filesystems typically don’t

become fragmented unless the disk is close to full.

Slide 20

Filesystem Implementation — Other Issues

• Quotas: Disk space is cheap and plentiful, but quotas can still be useful on

multi-user systems (e.g., to reduce how much trouble one careless user can

cause for others).

• Backups: Sometimes data is more valuable than physical medium. Backups

useful in recovering from disaster (rare these days but possible) and from

“stupidity” (alas, not so rare). Many details; read if interested.

• Consistency checks: Can easily happen that true state of filesystem is

represented by a combination of what’s on disk and what’s in memory — a

problem if shutdown is not orderly. (Partial) Solution is a “fix-up” program

(UNIX fsck, Windows scandisk).



CSCI 3323 November 18, 2015

Slide 21

Minute Essay

• If you have a system that supports multiple different file systems (such as

Linux with Samba to access Windows files), what problems might arise in

copying files between different file systems?

(We had an interesting problem a while back with backing up /users to an

OS X machine because the default for OS X is case-insensitive.)

Slide 22

Minute Essay Answer

• Case sensitivity is one source of potential problems. Other potential problems

include restrictions on what characters can appear in filenames and what

notion of file ownership and permissions is supported.


