CSCI 3323 August 29, 2016

Administrivia

e (None.)

Slide 1

\
(What Is An Operating System? (Review)

e Definition by example:
— Recent: Windows, Linux, UNIX, iOS, OS X (Mac), ...
— Older: MULTICS, VMS, MVS, VM/370, ...

— (Also special-purpose O/S’s for special-purpose hardware — e.g.,
Slide 2 video-conferencing system.)

e Definition(s) from operating systems textbooks:

— Something that provides “virtual machine” for application programs and
users (“top down”).

— Something that manages computer’s resources (“bottom up”).

e Another view — key part of bridging gap between what hardware can do (not
much, but very fast) and what users want.

. J

CSCI 3323

August 29, 2016

Slide 3

What The Hardware Can Do

e CPU: fetch machine instruction from memory, execute; repeat.

e Disk: read data from / write data to location on disk.

e And so forth — very primitive.

Slide 4

What The Software Must Do

e Programs students usually write in CS1, CS2:

— Define and manipulate data structures.
— Do arithmetic/logical calculations.
— Read stdin / write stdout.

— Call GUl/graphics library routines.

e The magic cloud (operating system):

— Read from keyboard, write to screen.

— Manage what’s on screen — windows, taskbar, etc.

— Run multiple applications “at the same time”.
— Manage disk contents — files, directories/folders.

— Share the machine with other users.

CSCI 3323 August 29, 2016

Why Review History?

e To understand roots/development of current operating systems.

e As a way of getting many perspectives on “what do we want an O/S to do, and
how do we make it do that?”

e Because history is intrinsically interesting? Try to imagine what using some of

Slide 5 those early machines might have been like.

e (To allow the instructor to relive the days of his/her youth?)

The Early Days (1940s)

o Programming done by making physical connections on a plugboard (!).
e Better than no computer at all, but tedious and inefficient!

e Example: the ENIAC (picture via “links” page).

Slide 6

CSCI 3323 August 29, 2016

The Early Days (1940s — 1950s)

e Key improvements: stored-program concept, punch cards.

o Programming done by encoding machine language into cards.

Program included code to start up computer, read rest of program into

memory, do all input and output, etc. (no operating system).
Slide 7

One program at a time, machine operated by programmer.

Better, but still tedious and inefficient!

The Early Days (1950s)

e Key improvements: assemblers and compilers, libraries of commonly-used
code, specialists to run machine (operators).

® Programming done in assembly language (or early high-level language),
punched into cards.

Slide 8 e Separate steps to translate to machine language, execute.
e One program at a time, but machine operated by specialist.
e |ess tedious, less inefficient.

e Still cumbersome for programmers, CPU idle between steps.

CSCI 3323

Slide 9

Slide 10

August 29, 2016

Batch Systems (1950s)

e Key improvement: “batch” idea — automate transitions between steps
(translate program, execute, translate next program, etc.).

o How to make this work? separate input by “control cards”, write primitive

operating system to interpret them, manage transitions.

e Less inefficient, but I/0O devices slow, so CPU idle a lot — still one program at

a time.

o Still cumbersome for programmers — punch program into cards, give to
operator, wait for output.

_

Control Cards — Example

//jobname JOB
//stepname EXEC
//STEPLIB DD
//SYSUT1 DD
//SYSPRINT DD
//SYSLIN DD
//

//SYSIN DD
source code

/ *

//stepname EXEC

input data

acctno, name,
PGM=compiler_name, PARM= (options)
DSNAME=path_for_compiler
UNIT=SYSDA, SPACE= (subparms)
SYSOUT=A

DSNAME=object_code, UNIT=SYSDA,
DISP=(MOD, PASS), SPACE= (subparms)

*

PGM=load—-and—-go

for program

CSCI 3323 August 29, 2016

\
4 Multiprogramming Systems (1960s — ?)

e Key improvement: “multiprogramming” — more than one program in memory,

so when one has to wait another can run.

o How to make this work? requires much more complex operating system —
must share memory and I/O devices among programs, switch between them,

Slide 11 etc.

e Efficient use of hardware.
e Still cumbersome for programmers — no real changes here.

o Example: IBM mainframe (1964) and peripherals (pictures on “links” page).

Timesharing Systems (1960s — ?)

e Key improvements: “interactive” users (using text terminals), utility programs
to support them (shells, text editors, etc.).

o How to make this work? like multiprogramming, but now programs sharing

memory are interactive users wanting fast response.
Slide 12 e Efficient use of hardware.
e Much less cumbersome for program development!

e Example: IBM terminal (picture on “links” page).

CSCI 3323 August 29, 2016

Personal Computers (1980s — ?)

e Similar evolution of operating systems — initially very simple, gradually
becoming more complex/capable.

e Features from mainframes adopted as hardware permitted.

o A key difference — emphasis on user convenience rather than efficient use of
Slide 13 hardware.

Evolution of Operating Systems, Recap

e Increasing hardware capability.

e Increasing O/S functionality and complexity — from simple program loader to
complex multitasking system.

e Parallels between evolution of mainframe O/S and PC O/S. (Similar evolution
Slide 14 may be happening with O/S for “smart phones”?)

CSCI 3323 August 29, 2016

o What's the most primitive and/or cumbersome system you'’ve personally
used? (I mean system-as-a-whole here, not specific tools — a PC without a
GUI, say, or a mainframe of some sort.)

Slide 15

