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Administrivia

e (None.)
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\
( What Is An Operating System? (Review)

e Definition by example:
— Recent: Windows, Linux, UNIX, iOS, OS X (Mac), ...
— Older: MULTICS, VMS, MVS, VM/370, ...

— (Also special-purpose O/S’s for special-purpose hardware — e.g.,
Slide 2 video-conferencing system.)

e Definition(s) from operating systems textbooks:

— Something that provides “virtual machine” for application programs and
users (“top down”).

— Something that manages computer’s resources (“bottom up”).

e Another view — key part of bridging gap between what hardware can do (not
much, but very fast) and what users want.
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What The Hardware Can Do

e CPU: fetch machine instruction from memory, execute; repeat.

e Disk: read data from / write data to location on disk.

e And so forth — very primitive.
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What The Software Must Do

e Programs students usually write in CS1, CS2:

— Define and manipulate data structures.
— Do arithmetic/logical calculations.
— Read stdin / write stdout.

— Call GUl/graphics library routines.

e The magic cloud (operating system):

— Read from keyboard, write to screen.

— Manage what’s on screen — windows, taskbar, etc.

— Run multiple applications “at the same time”.
— Manage disk contents — files, directories/folders.

— Share the machine with other users.
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Why Review History?

e To understand roots/development of current operating systems.

e As a way of getting many perspectives on “what do we want an O/S to do, and
how do we make it do that?”

e Because history is intrinsically interesting? Try to imagine what using some of

Slide 5 those early machines might have been like.

e (To allow the instructor to relive the days of his/her youth?)

The Early Days (1940s)

o Programming done by making physical connections on a plugboard (!).
e Better than no computer at all, but tedious and inefficient!

e Example: the ENIAC (picture via “links” page).
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The Early Days (1940s — 1950s)

e Key improvements: stored-program concept, punch cards.

o Programming done by encoding machine language into cards.

Program included code to start up computer, read rest of program into

memory, do all input and output, etc. (no operating system).
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One program at a time, machine operated by programmer.

Better, but still tedious and inefficient!

The Early Days (1950s)

e Key improvements: assemblers and compilers, libraries of commonly-used
code, specialists to run machine (operators).

® Programming done in assembly language (or early high-level language),
punched into cards.

Slide 8 e Separate steps to translate to machine language, execute.
e One program at a time, but machine operated by specialist.
e |ess tedious, less inefficient.

e Still cumbersome for programmers, CPU idle between steps.
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Batch Systems (1950s)

e Key improvement: “batch” idea — automate transitions between steps
(translate program, execute, translate next program, etc.).

o How to make this work? separate input by “control cards”, write primitive

operating system to interpret them, manage transitions.

e Less inefficient, but I/0O devices slow, so CPU idle a lot — still one program at

a time.

o Still cumbersome for programmers — punch program into cards, give to
operator, wait for output.

\_

Control Cards — Example

//jobname JOB
//stepname EXEC
//STEPLIB DD
//SYSUT1 DD
//SYSPRINT DD
//SYSLIN DD
//

//SYSIN DD
source code

/ *

//stepname EXEC

input data

acctno, name,
PGM=compiler_name, PARM= (options)
DSNAME=path_for_compiler
UNIT=SYSDA, SPACE= (subparms)
SYSOUT=A

DSNAME=object_code, UNIT=SYSDA,
DISP=(MOD, PASS), SPACE= (subparms)

*

PGM=load—-and—-go

for program
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\
4 Multiprogramming Systems (1960s — ?)

e Key improvement: “multiprogramming” — more than one program in memory,

so when one has to wait another can run.

o How to make this work? requires much more complex operating system —
must share memory and I/O devices among programs, switch between them,

Slide 11 etc.

e Efficient use of hardware.
e Still cumbersome for programmers — no real changes here.

o Example: IBM mainframe (1964) and peripherals (pictures on “links” page).

Timesharing Systems (1960s — ?)

e Key improvements: “interactive” users (using text terminals), utility programs
to support them (shells, text editors, etc.).

o How to make this work? like multiprogramming, but now programs sharing

memory are interactive users wanting fast response.
Slide 12 e Efficient use of hardware.
e Much less cumbersome for program development!

e Example: IBM terminal (picture on “links” page).
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Personal Computers (1980s — ?)

e Similar evolution of operating systems — initially very simple, gradually
becoming more complex/capable.

e Features from mainframes adopted as hardware permitted.

o A key difference — emphasis on user convenience rather than efficient use of
Slide 13 hardware.

Evolution of Operating Systems, Recap

e Increasing hardware capability.

e Increasing O/S functionality and complexity — from simple program loader to
complex multitasking system.

e Parallels between evolution of mainframe O/S and PC O/S. (Similar evolution
Slide 14 may be happening with O/S for “smart phones”?)
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o What's the most primitive and/or cumbersome system you'’ve personally
used? (I mean system-as-a-whole here, not specific tools — a PC without a
GUI, say, or a mainframe of some sort.)
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