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Administrivia

• Reminder: Homework 1 programming problem due today.
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Minute Essay From Last Lecture

• Everyone had had some exposure to multithreading in CS2 and (for some) in

later classes, including Web Applications and Game Design. (”Hm!”?)
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Mutual Exclusion Solutions So Far

• Solutions so far have some problems: inefficient, dependent on whether

scheduler/etc. guarantees fairness.

• Also, they’re very low-level, so might be hard to use for more complicated

problems.

• So, people have proposed various “synchronization mechanisms” . . .
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Synchronization Mechanisms — Overview

• Synchronization using only shared variables seems to be tedious and

inefficient.

• “Synchronization mechanisms” are more-abstract ways of coordinating what

processes do. A key point is providing something that potentially makes a

process wait.
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Semaphores

• History — 1965 paper by Dijkstra (possibly earlier work by Iverson, of APL/J

fame).

• Idea — define semaphore ADT:

– “Value” — non-negative integer.

– Two operations, both atomic:

∗ up (V) — add one to value.

∗ down (P) — block until value is nonzero, then subtract one.

• Ignoring for now how to implement this — is it useful?
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Mutual Exclusion Using Semaphores

• Shared variables:

semaphore S(1);

Pseudocode for each process:

while (true) {

down(S);

do_cr();

up(S);

do_non_cr();

}

• Invariant: “S has value 1 exactly when no process in its critical region, 0

exactly when one process in its critical region, and never has values other

than 0 or 1.”
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Mutual Exclusion Using Semaphores, Continued

• Invariant again: “S has value 1 exactly when no process in its critical region, 0

exactly when one process in its critical region, and never has values other

than 0 or 1.”

Obvious (?) that this means first requirement is met. Can check that others

are met too.
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Bounded Buffer Problem

• (Example of slightly more complicated synchronization needs.)

• Idea — we have a buffer of fixed size (e.g., an array), with some processes

(“producers”) putting things in and others (“consumers”) taking things out.

Synchronization:

– Only one process at a time can access buffer.

– Producers wait if buffer is full.

– Consumers wait if buffer is empty.

• Example of use: print spooling (producers are jobs that print, consumer is

printer — actually could imagine having multiple printers/consumers).
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Bounded Buffer Problem, Continued

• Shared variables:

buffer B(N); // initially empty, can hold N things

Pseudocode for producer:

while (true) {

item = generate();

put(item, B);

}

Pseudocode for consumer:

while (true) {

item = get(B);

use(item);

}

• Synchronization requirements:

1. At most one process at a time accessing buffer.

2. Never try to get from an empty buffer or put to a full one.

3. Processes only block if they “have to”.
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Bounded Buffer Problem, Continued

• We already know how to guarantee one-at-a-time access. Can we extend

that?

• Three situations where we want a process to wait:

– Only one get/put at a time.

– If B is empty, consumers wait.

– If B is full, producers wait.
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Bounded Buffer Problem, Continued

• What about three semaphores?

– One to guarantee one-at-a-time access.

– One to make producers wait if B is full — so, it should be zero if B is full —

“number of empty slots”?

– One to make consumers wait if B is empty — so, it should be zero if B is

empty — “number of slots in use”?
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Bounded Buffer Problem — Solution

• Shared variables:

buffer B(N); // empty, capacity N

semaphore mutex(1);

semaphore empty(N);

semaphore full(0);

Pseudocode for producer:

while (true) {

item = generate();

down(empty);

down(mutex);

put(item, B);

up(mutex);

up(full);

}

Pseudocode for consumer:

while (true) {

down(full);

down(mutex);

item = get(B);

up(mutex);

up(empty);

use(item);

}
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Implementing Semaphores

• We want to define:

– Data structure to represent a semaphore.

– Functions up and down.

• up and down should work the way we said, and we’d like to do as little

busy-waiting as possible.
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Implementing Semaphores, Continued

• Idea — represent semaphore as integer plus queue of waiting processes

(represented as, e.g., process IDs).

• Then how should this work . . .
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Implementing Semaphores, Continued

• Variables — integer value, queue of process IDs queue.

down() {

bool zero;

enter_cr();

zero = (value == 0);

if (!zero)

value -= 1;

else

enqueue(current_process, queue);

leave_cr();

if (zero)

block(); // mark current process blocked

}

up() {

process p = null;

enter_cr();

if (empty(queue))

value += 1;

else

p = dequeue(queue);

leave_cr();

if (p != null)

unblock(p); // mark p runnable

}

• enter cr(), leave cr()? next slide.
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Implementing Semaphores, Continued

• Revised functions to enter, leave critical region:

enter_cr:

TSL registerX, lockVar

compare registerX with 0

if equal, jump to ok

invoke scheduler # thread yields to another thread

jump to enter_cr

ok:

return

leave_cr:

store 0 in lock

return
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O/S Versus Application Programs — Recap/Review

• Should seem reasonable to make distinction between what O/S can do and

what application programs can do.

• But how to enforce that? i.e., how to make it as difficult as possible for buggy

or malicious application programs to do what they shouldn’t?

Can this problem be solved completely by clever programming? Consider that

most current systems can be asked to load and execute machine-level

application code . . .
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O/S Versus Application Programs, Continued

• If you don’t allow that — how do you decide what’s okay?

• If you do allow loading and executing arbitrary code, then some sort of

hardware mechanism for limiting what it can do seems like the only way. This

is the problem “dual-mode operation” is intended to solve.
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O/S Versus Application Programs, Continued

• At hardware level, then, need to keep track of which mode we’re in and use

that information to allow/disallow certain operations (and maybe memory

accesses — though that could be a separate problem/solution).

• To do this efficiently — single bit in a register somewhere, probably a

special-purpose one, checked by “privileged” instructions.

• What happens if unprivileged program tries . . . ? Hardware version of

exception — interrupt.

• How to set this bit? privileged operation, or no?
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O/S Versus Application Programs, Continued

• A solution: Include instruction to generate interrupt, and have hardware, on

interrupt, transfer control to a fixed location and set the “privileged” bit. If

what’s at the fixed location is O/S code, then it can do more checking (e.g.,

passwords).

• What if it’s not O/S code?
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O/S Versus Application Programs, Continued

• So maybe we need memory protection too? but we probably needed that

anyway.

• How to make memory protection work? more about that later, but for now —

again, seems like the only way to do this reliably and efficiently is with help

from hardware.
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Minute Essay

• What (if anything) did you find interesting, difficult, or otherwise noteworthy

about Homework 1?


