
CSCI 3323 October 26, 2016

Slide 1

Administrivia

• Reminder: Homework 4 due today.

• Homework 5 on the Web (except for second programming problem). Due in a

week (except for that not-there-yet problem — TBA via e-mail).

Slide 2

Minute Essay From Last Lecture

• Many people came reasonably close to the “right” answer. However . . .

• “Disks are faster” — true, but so are processors, so the disparity between

speeds still holds.

• “Disks are bigger” — also true, but not relevant.

• “Memories are bigger” — true, and does make a difference here.

• One person thought maybe that cup of coffee was overheating the disk —

interesting but probably not the case, and wouldn’t cause more page faults

anyway.

• Aside: More than one person, in mentioning increases, said “exponentially”.

Normally one of my language-usage peeves, but in computing actually

sometimes correct!



CSCI 3323 October 26, 2016

Slide 3

“Thrashing”

• Recall the notion of a process’s “working set” — portion of its address space

currently in use.

• Q: What happens if the combined sizes of all active processes’ working sets

is too big for RAM?

• A: Pretty much what the sysadmins in my minute-essay story observed —

system will spend so much time paging it can’t do much else.

Slide 4

Memory Management Versus(?) Caching

• Main memory (RAM) is not such a scarce resource on most current

mainstream systems, so managing it carefully isn’t as important (though it still

could be).

• What might matter more from an application-programming perspective is not

whether the whole program and its data fit into RAM (likely) but whether the

current working set fits into cache. Performance differences can be

noticeable!

Example: matrix multiplication, where the difference between the “naive”

(obvious) implementation and one that works by blocks can be noticeable,

almost surely because of differences in what fits in cache.



CSCI 3323 October 26, 2016

Slide 5

Shared Libraries — Recap/Review

• Idea of shared libraries (“DLLs” in Windows-speak) is to keep one copy of

code in memory and have all processes that need the code use that. Key

advantage is more-efficient use of memory.

• A good-and-bad aspect is that if the shared code is updated, all programs that

use it are affected.

• How to make this happen . . . At link time, programs get “stub” versions of

functions. References to real versions resolved at load time.

• Resolving references to shared code at load time — finer-grained version of

“relocation problem”, no? and fixable by making sure library contains only

“position-independent code”.

• (Still seems like it would be necessary for the shared code to be mapped into

all address spaces at the same location. “Hm!”?)

Slide 6

Memory-Mapped File I/O

• Worth mentioning here that some systems also provide a mechanism (e.g.,

via system calls) to allow reading/writing whole files into/from memory. If

there’s enough memory, this could improve performance.

• Example of how this works in Linux — man page for mmap.



CSCI 3323 October 26, 2016

Slide 7

One More Memory Management Strategy —

Segmentation

• Idea — make program address “two-dimensional” / separate address space

into logical parts. So a virtual address has two parts, a segment and an offset.

• To map virtual address to memory location, need “segment table”, like page

table except each entry also requires a length/limit field. (So this is like a

cross between contiguous-allocation schemes and paging.)

Slide 8

Segmentation, Continued

• Benefits?

– Nice abstraction; nice way to share memory.

– Flexible use of memory — can have many areas that grow/shrink as

required, not just heap and stack — especially if we combine with paging.

• Drawbacks?

– External fragmentation possible (can offset by also paging).

– More complex.

– “Paging” in/out more complex — issues similar to with

contiguous-allocation.



CSCI 3323 October 26, 2016

Slide 9

Memory Management in Windows

• Apparently very complex, but basic idea is paging.

• Intraprocess memory management is in terms of code regions (some shared

— DLLs), data regions, stack, and area for o/s. “Virtual Address Descriptor”

for each contiguous group of pages tracks location on disk, etc.

• Memory-mapped files can make I/O faster and allow processes to (in effect)

share memory.

• Demand-paged, with six (!) background threads that try to maintain a store of

free page frames. Page replacement algorithm is based on idea of working

set.

Slide 10

Memory Management in UNIX/Linux

• Very early UNIX used contiguous-allocation or segmentation with swapping.

Later versions use paging. Linux uses multi-level page tables; details depend

on architecture (e.g., three levels for Alpha, two for Pentium).

• Intraprocess memory management is in terms of text (code) segment, data

segment, and stack segment. Linux reserves part of address space for O/S.

For each contiguous group of pages, “vm area struct” tracks location on disk,

etc.

• Memory-mapped files can make I/O faster and allow processes to (in effect)

share memory.

• Demand-paged, with background process (“page daemon”) that tries to

maintain a store of free page frames. Page replacement algorithms are

mostly variants of clock algorithm.



CSCI 3323 October 26, 2016

Slide 11

Minute Essay

• Any questions about memory management before we move on?


