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Administrivia

• Reminder: Homework 4 due today.

• Homework 5 on the Web (except for second programming problem). Due in a

week (except for that not-there-yet problem — TBA via e-mail).
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Minute Essay From Last Lecture

• Many people came reasonably close to the “right” answer. However . . .

• “Disks are faster” — true, but so are processors, so the disparity between

speeds still holds.

• “Disks are bigger” — also true, but not relevant.

• “Memories are bigger” — true, and does make a difference here.

• One person thought maybe that cup of coffee was overheating the disk —

interesting but probably not the case, and wouldn’t cause more page faults

anyway.

• Aside: More than one person, in mentioning increases, said “exponentially”.

Normally one of my language-usage peeves, but in computing actually

sometimes correct!
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“Thrashing”

• Recall the notion of a process’s “working set” — portion of its address space

currently in use.

• Q: What happens if the combined sizes of all active processes’ working sets

is too big for RAM?

• A: Pretty much what the sysadmins in my minute-essay story observed —

system will spend so much time paging it can’t do much else.
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Memory Management Versus(?) Caching

• Main memory (RAM) is not such a scarce resource on most current

mainstream systems, so managing it carefully isn’t as important (though it still

could be).

• What might matter more from an application-programming perspective is not

whether the whole program and its data fit into RAM (likely) but whether the

current working set fits into cache. Performance differences can be

noticeable!

Example: matrix multiplication, where the difference between the “naive”

(obvious) implementation and one that works by blocks can be noticeable,

almost surely because of differences in what fits in cache.
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Shared Libraries — Recap/Review

• Idea of shared libraries (“DLLs” in Windows-speak) is to keep one copy of

code in memory and have all processes that need the code use that. Key

advantage is more-efficient use of memory.

• A good-and-bad aspect is that if the shared code is updated, all programs that

use it are affected.

• How to make this happen . . . At link time, programs get “stub” versions of

functions. References to real versions resolved at load time.

• Resolving references to shared code at load time — finer-grained version of

“relocation problem”, no? and fixable by making sure library contains only

“position-independent code”.

• (Still seems like it would be necessary for the shared code to be mapped into

all address spaces at the same location. “Hm!”?)
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Memory-Mapped File I/O

• Worth mentioning here that some systems also provide a mechanism (e.g.,

via system calls) to allow reading/writing whole files into/from memory. If

there’s enough memory, this could improve performance.

• Example of how this works in Linux — man page for mmap.
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One More Memory Management Strategy —

Segmentation

• Idea — make program address “two-dimensional” / separate address space

into logical parts. So a virtual address has two parts, a segment and an offset.

• To map virtual address to memory location, need “segment table”, like page

table except each entry also requires a length/limit field. (So this is like a

cross between contiguous-allocation schemes and paging.)
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Segmentation, Continued

• Benefits?

– Nice abstraction; nice way to share memory.

– Flexible use of memory — can have many areas that grow/shrink as

required, not just heap and stack — especially if we combine with paging.

• Drawbacks?

– External fragmentation possible (can offset by also paging).

– More complex.

– “Paging” in/out more complex — issues similar to with

contiguous-allocation.
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Memory Management in Windows

• Apparently very complex, but basic idea is paging.

• Intraprocess memory management is in terms of code regions (some shared

— DLLs), data regions, stack, and area for o/s. “Virtual Address Descriptor”

for each contiguous group of pages tracks location on disk, etc.

• Memory-mapped files can make I/O faster and allow processes to (in effect)

share memory.

• Demand-paged, with six (!) background threads that try to maintain a store of

free page frames. Page replacement algorithm is based on idea of working

set.
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Memory Management in UNIX/Linux

• Very early UNIX used contiguous-allocation or segmentation with swapping.

Later versions use paging. Linux uses multi-level page tables; details depend

on architecture (e.g., three levels for Alpha, two for Pentium).

• Intraprocess memory management is in terms of text (code) segment, data

segment, and stack segment. Linux reserves part of address space for O/S.

For each contiguous group of pages, “vm area struct” tracks location on disk,

etc.

• Memory-mapped files can make I/O faster and allow processes to (in effect)

share memory.

• Demand-paged, with background process (“page daemon”) that tries to

maintain a store of free page frames. Page replacement algorithms are

mostly variants of clock algorithm.
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Minute Essay

• Any questions about memory management before we move on?


