CSCI 3323 November 16, 2016

Administrivia

o Reminder: Homework 6 due today.

e Homework 7 to be on the Web soon, due after Thanksgiving. | will send mail.

Slide 1

Character-Oriented Terminals — Recap/Review

e Hardware: Keyboard sends a character at a time. Display accepts stream of
characters, which may include “escape sequences” (to position cursor, turn

on reverse-video mode, etc.).

e Software: Can accept input in “raw” or “cooked” mode (with the latter, device
Slide 2 driver can do some simple line editing). Must produce output including any
needed escape sequences (which might vary by terminal type — in
UNIX-world, “termcap” can be used to hide this from application).

Example: programs using ncurses library. (I will try to put some on the

“useful links” page.)




CSCI 3323 November 16, 2016

-

GUI Hardware and Software — Recap/Review

e Hardware: Keyboard and mouse send very low-level events. Display at one
point was fairly low-level, but now often contains its own processors.

e Software: Framework for providing graphical interfaces may be integral to O/S
(Windows) or an add-on (UNIX/Linux).

Slide 3
Network Terminals — Hardware
e Keyboard, mouse, and display as described previously, plus local processor;
connected to remote system.
e |ocal processor can be very capable (X terminal, or even PC configured to
run as one) or more primitive.
Slide 4




CSCI 3323 November 16, 2016

GUI-Based Programming

e Input from keyboard and mouse captured by O/S and turned into messages
to process owning appropriate window.

e Typical structure of GUI-based program is a loop to receive and dispatch

these messages — “event-driven” style of programming.

Slide 5 e Details vary between Windows and X, but overall idea is similar. See example
programs in textbook. (I've also written programs using the fairly low-level
X11 interface, but — maybe not. But it's doable, even from C, though of
course not completely portable.)

4 I/O in UNIX/Linux )

e Access to devices provided by special files (normally in /dev/ *), to provide
uniform interface for callers. Two categories, block and character. Each
defines interface (set of functions) to device driver. Major device number used

to locate specific function.
Slide 6 e For block devices, buffer cache contains blocks recently/frequently used.

e For character devices, optional line-discipline layer provides some of what we
described for text-terminal keyboard driver.

e Streams provide additional layer of abstraction for callers — can interface to
files, terminals, etc. (This is what you access with xscanf, *printf.)




CSCI 3323 November 16, 2016

4 1/0 in Windows )

e Hardware Abstraction Layer (HAL) attempts to insulate rest of O/S from some
low-level details — e.g., I/O using ports versus memory-mapped I/O.

e Standard interface to device drivers — Windows Driver Model. Drivers are

passed I/O Request Packet objects.

Slide 7
“Everything’s a File” Revisited
e | mentioned the pseudofilesystem /proc? which supposedly you can
read/write just as if it were a file?
e | wrote some throwaway code to access “files” within it and learned(?) that
while C stream I/O (fopen, fgetc, etc.) didn’t work well, the lower-level
Slide 8 routines (open, read, etc.) did.




CSCI 3323 November 16, 2016

e Anything noteworthy about Homework 6?

Slide 9




