
CSCI 3323 November 16, 2016

Slide 1

Administrivia

• Reminder: Homework 6 due today.

• Homework 7 to be on the Web soon, due after Thanksgiving. I will send mail.

Slide 2

Character-Oriented Terminals — Recap/Review

• Hardware: Keyboard sends a character at a time. Display accepts stream of

characters, which may include “escape sequences” (to position cursor, turn

on reverse-video mode, etc.).

• Software: Can accept input in “raw” or “cooked” mode (with the latter, device

driver can do some simple line editing). Must produce output including any

needed escape sequences (which might vary by terminal type — in

UNIX-world, “termcap” can be used to hide this from application).

Example: programs using ncurses library. (I will try to put some on the

“useful links” page.)



CSCI 3323 November 16, 2016

Slide 3

GUI Hardware and Software — Recap/Review

• Hardware: Keyboard and mouse send very low-level events. Display at one

point was fairly low-level, but now often contains its own processors.

• Software: Framework for providing graphical interfaces may be integral to O/S

(Windows) or an add-on (UNIX/Linux).

Slide 4

Network Terminals — Hardware

• Keyboard, mouse, and display as described previously, plus local processor;

connected to remote system.

• Local processor can be very capable (X terminal, or even PC configured to

run as one) or more primitive.



CSCI 3323 November 16, 2016

Slide 5

GUI-Based Programming

• Input from keyboard and mouse captured by O/S and turned into messages

to process owning appropriate window.

• Typical structure of GUI-based program is a loop to receive and dispatch

these messages — “event-driven” style of programming.

• Details vary between Windows and X, but overall idea is similar. See example

programs in textbook. (I’ve also written programs using the fairly low-level

X11 interface, but — maybe not. But it’s doable, even from C, though of

course not completely portable.)

Slide 6

I/O in UNIX/Linux

• Access to devices provided by special files (normally in /dev/*), to provide

uniform interface for callers. Two categories, block and character. Each

defines interface (set of functions) to device driver. Major device number used

to locate specific function.

• For block devices, buffer cache contains blocks recently/frequently used.

• For character devices, optional line-discipline layer provides some of what we

described for text-terminal keyboard driver.

• Streams provide additional layer of abstraction for callers — can interface to

files, terminals, etc. (This is what you access with *scanf, *printf.)



CSCI 3323 November 16, 2016

Slide 7

I/O in Windows

• Hardware Abstraction Layer (HAL) attempts to insulate rest of O/S from some

low-level details — e.g., I/O using ports versus memory-mapped I/O.

• Standard interface to device drivers — Windows Driver Model. Drivers are

passed I/O Request Packet objects.

Slide 8

“Everything’s a File” Revisited

• I mentioned the pseudofilesystem /proc? which supposedly you can

read/write just as if it were a file?

• I wrote some throwaway code to access “files” within it and learned(?) that

while C stream I/O (fopen, fgetc, etc.) didn’t work well, the lower-level

routines (open, read, etc.) did.



CSCI 3323 November 16, 2016

Slide 9

Minute Essay

• Anything noteworthy about Homework 6?


