
CSCI 3323 August 30, 2017

Slide 1

Administrivia

• About the textbook, it appears that many people have bought electronic

copies and most of the rest are ordering or have ordered from online sources.

I don’t know when the bookstore will have copies.

• Homework 1 on the Web (written problems only, for now). Due in a week and

a half (to allow time for textbooks to arrive? — but at least one problem you

should be able to do without a textbook). Programming problem, to be added

and discussed next time, will be due later.

Note request for information about collaboration (“honor code statement”).

Slide 2

Minute Essay From Last Lecture

• Not everyone had exposure to anything very old/different.

• But some did: post-“jailbreak” Wii, Linux without GUI, debugging instructions

on a processor (for firmware company — sounds interesting!), PC without

GUI, TI 83, rotary phone, Commodore 64C, various old-and-slow PCs,

Windows 98.

CSCI 3323 August 30, 2017

Slide 3

Operating System Functionality — Overview

• Provide a “virtual machine”:

– Filesystem abstraction — files, directories, ownership, access rights, etc.

– Process abstraction — “process” is a name for one of a collection of

“things happening at the same time” (multiple users, multiple applications,

background activities such as print spooling, etc.).

• Manage resources (probably on behalf of multiple users/applications):

– Memory.

– CPU cycles (one or more CPUs).

– I/O devices.

Slide 4

Overview of Hardware

• Simplified view of hardware (as it appears to programmers) — processor(s),

memory, I/O devices, bus.

• Figure 1.6 shows simplified view of overall organization — components

connected to a single bus. (Actual processors may have more than one bus.)

CSCI 3323 August 30, 2017

Slide 5

Processors

• “Instruction set” of primitive operations — load/store, arithmetic/logical

operations, control flow.

• Basic CPU cycle — fetch instruction, decode, execute. (Again, this is

simplified — pipelined or “superscalar” architectures overlap these steps.)

• Registers — “local memory” for processor; general-purpose registers for

arithmetic and other operations, special-purpose registers (program counter,

stack pointer, program status word (PSW)).

Notice that all programs have access to some registers (not clear how they

could run otherwise!), though one might want to restrict access to some

special-purpose registers.

Not shared among processes in the sense of simultaneous use (but context

switches “fake it” — much more later).

Slide 6

Processors, Continued

• Typically also include features useful in writing an operating system . . .

CSCI 3323 August 30, 2017

Slide 7

Dual-Mode Operation, Privileged Instructions

• Useful to have mechanism to keep application programs from doing things

that should be reserved for O/S.

• Usual approach — in hardware, define two modes for processor

(supervisor/kernel and user), privileged instructions.

– Privileged instructions — things only O/S should do, e.g., enable/disable

interrupts.

– Bit in PSW indicates kernel mode (O/S only, privileged instructions okay)

or user mode (application programs, privileged instructions not allowed).

– When to switch modes? when O/S starts application program, when

application program requests O/S services, on error.

– How to switch? kernel to user seems straightforward, but how about the

other way? Usually handled via TRAP or similar instruction, which

generates an interrupt (more about interrupts later).

Slide 8

Multithreaded and Multicore Chips

• For many years (at least 30, to my knowledge) advocates of parallel

programming have been saying that eventually hardware designers would run

out of ways to make single processors faster — and finally it seems to be

happening.

• Basic idea — number of transistors one can put on a chip kept increasing,

and for a long time hardware designers used that to make single processors

faster (e.g., with longer pipelines). But then they apparently ran out of ideas.

So, instead, they chose to provide (more) hardware support for parallelism.

Various approaches, including “hyperthreading” (fast switching among

threads), “multicore” (multiple independent CPUs, possibly sharing cache),

“GPGPU” (use of graphic card’s many processors for computation).

CSCI 3323 August 30, 2017

Slide 9

Memory Hierarchy

• In a perfect world — fast, big, cheap, as permanent as desired.

• In this world — hierarchy of types, from fast but expensive to slow but cheap:

registers, cache, RAM, magnetic disk, magnetic tape. (See Figure 1-9.)

• Note also — some types volatile, some non-volatile.

Slide 10

Registers and Caches

• Registers — part of processor, fastest to access but most expensive to build.

Managed explicitly in software.

• Caches (possibly multiple levels) — less fast, less expensive, bigger. Mostly

managed by hardware.

• Aside: Caching is a widely used strategy in computing! virtual memory, disk

blocks in memory, etc., etc.

CSCI 3323 August 30, 2017

Slide 11

Main Memory (RAM)

• Still less fast, less expensive, bigger.

• Shared among processes — which presents some interesting challenges . . .

Slide 12

Memory Protection

• Very useful to have a way to give each process (including O/S) its own

variables that other processes can’t alter.

• Usual approach — provide a hardware mechanism such that attempting to

access memory out of ranges generates exception/interrupt. Several ways;

some simple ones:

– Limit each process to a range of memory locations; hold starting and

ending addresses in special registers.

– Partition memory into blocks, give each block a numeric key, give each

process a key, and only allow processes to access blocks if keys match.

CSCI 3323 August 30, 2017

Slide 13

I/O Devices

• What they provide (from the user’s perspective):

– Non-volatile storage (disks, tapes).

– Connections to outside world (keyboards, microphones, screens, etc.,

etc.).

• Distance between hardware and “virtual machine” is large here, so usually

think in terms of:

– Layers of s/w abstraction (as with other parts of O/S).

– Layers of h/w abstraction too: most devices attached via controller, which

provides a h/w layer of abstraction (e.g., “IDE controller”).

Slide 14

I/O Basics

• CPU communicates with device controller by reading/writing device registers;

device controller communicates with device.

• Memory-mapped I/O versus I/O instructions.

• Polling versus interrupts.

• Functionality for a particular device packaged as “device driver”.

• I/O in application programs — make system call to invoke O/S services.

CSCI 3323 August 30, 2017

Slide 15

Overview of Hardware — Recap

• Idea is to get a sense of what O/S designers/developers have to work with.

• Notice also what features seem intended to make it possible to write an O/S

that can defend itself!

• (I won’t talk in class about the sections on buses and booting, but do read

them.)

Slide 16

Operating System Functionality — Review

• “Operating system as virtual machine” must provide key abstractions

(processes, filesystems).

• “Operating system as resource manager” must manage resources (memory,

I/O devices, etc.).

• Operating system functionality typically packaged as “system calls” (more

later).

• Details obviously vary among systems, but some ideas are common to

most/many (more later).

CSCI 3323 August 30, 2017

Slide 17

Processes — Abstraction

• Basic idea — a program (application or background activity) together with its

current state (registers and memory contents).

• In order to have more than one at a time, need some way to share the

physical machine among them.

• May be useful to think in terms of each process having its own simulated

processor and memory (“address space”), with operating system providing

infrastructure to map that onto the hardware. How to do that? (Next slide.)

• Other relevant concepts include process ownership, hierarchical relationships

among processes, interprocess communication.

Slide 18

Processes — Implementation

• Managing the “simulated processor” aspect requires some way to timeshare

physical processor(s). Typically do that by defining a per-process data

structure that can save information about process. Collection of these is a

“process table”, and each one is a “process table entry”.

• Managing the “address space” aspect requires some way to partition physical

memory among processes. To get a system that can defend itself (and keep

applications from stepping on each other), memory protection is needed —

probably via hardware assist. Some notion of address translation may also be

useful, as may a mechanism for using RAM as a cache for the most active

parts of address space, with other parts kept on disk.

CSCI 3323 August 30, 2017

Slide 19

Filesystems

• Most common systems are hierarchical, with notions of “files” and

“folders”/“directories” forming a tree. “Links”/“shortcuts” give the potential for a

more general (non-tree) graph.

• Connecting application programs with files — notions of “opening” a file

(yielding a data structure programs can use, usually by way of library

functions).

• Many, many associated concepts — ownership, permissions, access methods

(simple sequence of bytes, or something more complex?), whether/how to

include direct access to I/O devices in the scheme.

Slide 20

I/O

• As noted previously — hardware is diverse, and communicating with it may

involve a lot of messy details.

• So — typically there is an “I/O subsystem”, often involving multiple layers of

abstraction. More later!

CSCI 3323 August 30, 2017

Slide 21

Hardware, Software, and History

• Textbook has a section called “Ontogeny Recapitulates Phylogeny”. Many

interesting general observations:

• What seems like a good idea in software is strongly influenced by what the

hardware can do. (I think it goes the other way too, but that’s speculation.)

• As in other areas of human endeavor, evolution of operating systems is in

some ways cyclic: What seems brilliant now may be “ready for the scrap

heap” in a few years — and then resurface as brilliant later. (This is why it’s

not useless to read about approaches not currently in use?)

Slide 22

The Operating System “Zoo”

• Section of this name in textbook talks briefly about different kinds of operating

systems.

• Key point here? a lot of variation in situations (combination of hardware and

“use case”) where an O/S is needed, worth thinking about what implications

that might have for O/S.

CSCI 3323 August 30, 2017

Slide 23

Operating System Structures

• General-purpose operating systems are big — tens of millions of lines of code

(probably mostly in something C-like). How to organize all of it? several

choices, discussed in textbook:

– Monolithic systems.

– Layered systems.

– Microkernels.

– Client-server model.

– Virtual machines.

– Exokernels.

• A possibly-relevant maxim, origin unknown (to me): “Any programming

problem can be solved by adding a layer of abstraction. Any performance

problem can be solved by removing a layer of abstraction.” Not always true,

but true enough?

Slide 24

System Calls

• Recall that some things can/should only be done by O/S (e.g., I/O), and

hardware can help enforce that.

• But application programs need to be able to request these services. How can

we make this work? System calls . . .

CSCI 3323 August 30, 2017

Slide 25

System Calls — Mechanism

• Library routine (running in user mode) sets up parameters and issues TRAP

instruction or similar. A key parameter says which system call is being made

(to create a process, open a file, etc.).

• TRAP instruction switches to kernel mode and transfers control to a fixed

address.

• At that address is code for “handler” that uses parameters set up by library

routine to figure out which system call is being invoked and call appropriate

code.

• When processing of system call is finished, control returns to calling program

— if appropriate. (What are other possibilities? Consider situations involving

waiting, errors.) Return to calling program also switches back to user mode.

Slide 26

System Calls — Services Provided

• Typical services provided include creating processes, creating files and

directories, etc., etc. — details depend on (and in some ways define, from

application programmer’s perspective) operating system.

• Examples discussed in textbook:

– POSIX (Portable Operating System Interface (for UNIX)) — about 100

calls.

– Win32 API (Windows 32-bit Application Program Interface) — thousands

of calls.

Worth noting that the actual number of system calls is likely smaller —

interface may contain function calls that are implemented completely in user

space (no TRAP to kernel space).

CSCI 3323 August 30, 2017

Slide 27

Interrupts

• Processing of TRAP instructions is similar to interrupts, so worth mentioning

here:

• Very useful to have a way to interrupt current processing when an unexpected

or don’t-know-when event happens — error occurs (e.g., invalid operation),

I/O operation completes.

• On interrupt, goal is to save enough of current state to allow us to restart

current activity later:

– Save old value of program counter.

– Disable interrupts.

– Transfer control to fixed location (“interrupt handler” or “interrupt vector”) —

normally O/S code that saves other registers, re-enables interrupts,

decides what to do next, etc.

Slide 28

Example: System Calls in MIPS

• MIPS instruction set includes syscall instruction that generate a

system-call exception. MIPS interrupts/exceptions use special-purpose

registers to hold type of exception and address of instruction causing

exception. Before issuing syscall program puts value indicating which

service it wants in register $v0. Parameters for system call are in other

registers (can be different ones for different calls).

• Interrupt handler for system calls looks at $v0 to figure out what service is

requested, other registers for other parameters.

• When done, it uses rfe instruction to restore calling program’s environment,

then returns to caller using value from EPC register.

CSCI 3323 August 30, 2017

Slide 29

Example: System Calls in MIPS/SPIM

• SPIM simulator — a primitive O/S! — defines a short list of system calls.

Example code fragment:

la $a0, hello

li $v0, 4 # "print string" syscall

syscall

....

.data

hello: .asciiz "hello, world!\n";

Slide 30

Minute Essay

• I once had a learning experience about “how DOS is different from a real

O/S”. Summary version: A program using pointers (possibly uninitialized)

caused the whole machine to lock up, so thoroughly that the only recovery

was to power-cycle.

What do you think went wrong?

(After you’ve told me, stick around a few minutes and I’ll show my answer.)

CSCI 3323 August 30, 2017

Slide 31

Minute Essay Answer

• The program changed memory at the addresses pointed to by the uninitialized

pointers — and this memory was being used by the O/S, possibly to store

something related to interrupt handling. A “real” O/S wouldn’t allow this!

(Then again, the version of MS-DOS in question was supposedly written to

run on hardware that didn’t provide memory protection, so maybe it’s not

DOS’s fault.)

