
CSCI 3323 September 6, 2017

Slide 1

Administrivia

• Reminder: Homework 1 written problems due Monday. Turn in on paper.

• Homework 1 programming problem on the Web; due next Wednesday. Turn in

via e-mail.

Slide 2

Minute Essay From Last Lecture

• (Review.)

• Most people at least were “in the ballpark”.

• Would you agree that irritating as “Segmentation fault” is, it’s not as bad as

this alternative?

CSCI 3323 September 6, 2017

Slide 3

System Call / Interrupt Processing — Recap/Review

• Recall(?) typical mechanism for regular program calls: Put parameters in

agreed-on locations (registers, stack, etc.), issue instruction that saves

current program counter (in another register maybe) and transfers control to

called program. Called program returns using saved program counter.

• System calls are similar except that the “called program” is at a fixed address

and the transfer of control also puts the processor in supervisor/kernel mode.

Slide 4

Command Shells

• History — early batch systems had to interpret “control cards”; modern

equivalent is to interpret “commands” (usually interactive).

• Not technically part of O/S, but important and related.

• Typical shell functionality:

– Invocation of programs (optionally in background).

– Input/output redirection.

– Program-to-program connections (pipes).

– “Wildcard” capability.

– Scripting capability.

• Examples — MS-DOS command.com, Cygwin under Windows; UNIX sh,

bash, csh, tcsh, ksh, zsh, . . .

CSCI 3323 September 6, 2017

Slide 5

Homework 1 Programming Problem

• The idea is to write a very simple shell based on the sort-of-pseudocode in

the textbook, using fork and execve system calls.

• To do this, you have to solve a couple of problems:

– Figure out how to use system-call library functions fork and execve.

Overview on next slide; details in man pages.

– Deal with string processing in C (or C++). (This year I’m supplying starter

code.)

Slide 6

Homework 1 Programming Problem, Continued

• fork() function creates and starts a new process. Both original (“parent”)

and new (“child”) processes execute the same program, continuing at

whatever follows call to fork(). Return value from function says which

process is which.

• execve() function discards current program and loads and starts a new

one. If it fails, execution continues with whatever follows; otherwise whatever

follows is ignored!

CSCI 3323 September 6, 2017

Slide 7

Compiler(s) on the Classroom/Lab Machines

• For the homework you will be writing C code (or C++ if you truly don’t want to

use the starter code). I will test with the appropriate GNU compiler on the lab

machines, so you should probably do so too.

• For what it’s worth, the current (and just-previous) “build” running on the

classroom/lab machines includes multiple versions of gcc. If you’re using

one of the non-default ones (perhaps because it’s required for some other

course, such as anything Dr. Lewis teaches using C++), it would be helpful to

tell me so when you turn something in. More information about all of this on

request.

Slide 8

Sidebar: C/C++ Programming Advice

• I strongly recommend always compiling with flags to get extra warnings.

There are lots of them, but you can get a lot of mileage just from -Wall.

Add -pedantic to flag nonstandard usage.

Warnings are often a sign that something is wrong. Only rarely should they be

ignored! Sometimes the problem is a missing #include. man pages tell

you if you need one.

• If you want to write “new” C (including C++-style comments), you may need to

add -std=c99.

CSCI 3323 September 6, 2017

Slide 9

Sidebar: C/C++ Programming Advice, Continued

• If typing all of these gets tedious, consider using a simple makefile. Create a

file called Makefile containing the following (the first line for C, the second

for C++):

CFLAGS = -Wall

CXXFLAGS = -Wall

and then compile hello.c to hello by typing make hello, or

similarly for hello.cpp.

Slide 10

Process Abstraction

• We want O/S to manage “things happening at the same time” — applications,

hidden tasks such as managing a device, etc.

• Key abstraction for this — “process” — program plus associated data,

including program counter.

• True concurrency (“at the same time”) requires more than one

CPU/processor/core. Can get apparent concurrency via interleaving — model

one virtual CPU per process and have the real processor switch back and

forth among them (“context switch”).

(Aside: In almost all respects, this turns out to be indistinguishable from true

concurrency. “Hm!”?)

CSCI 3323 September 6, 2017

Slide 11

Process Abstraction, Continued

• Can also associate with process an “address space” — range of addresses

the program can use. Simplifying a little, this is “virtual memory” (like the

virtual CPU) that only this process can use. More (lots more) about this later.

(Nitpick: Yes, we also want to be able to share memory among processes.

More about that later too.)

• How to map this to the real hardware? Chapter 2 talks about how to share the

real CPU(s) among processes; chapter 3 talks about how to share the real

memory.

Slide 12

Context Switches

• What is it? switch from one process to another.

• When should this happen?

CSCI 3323 September 6, 2017

Slide 13

Context Switches, Continued

• Should happen

– when a process’s “time slice” is up.

– when there’s an unrecoverable error.

– when there’s something that needs to be done right away (e.g., deal with

input/output).

– maybe other times? (when a process has to wait for something, e.g.).

All signalled by some kind of interrupt.

• Goal is to suspend work on a process such that we can later pick up exactly

where we left off. How do we make that happen?

(Think about what the hardware does when an interrupt happens, what’s

included in that “virtual CPU”.)

Slide 14

Context Switches, Continued

• On interrupt, hardware saves program counter (at least — why?), transfers

control to fixed location — which contains O/S code.

• That O/S code has to

– Save CPU state (program counter, registers, etc.) for the current process.

– Deal with interrupt (details depend on type — I/O versus timer versus . . .).

– Restore CPU state for “next” process (previously saved), thereby restarting

it.

(“Next” process? yes, O/S might have to choose — more about that later.)

CSCI 3323 September 6, 2017

Slide 15

Process Creation and Termination

• When are processes created?

– At system startup.

– When another process makes a “create process” system call — e.g., to

start a new application.

• When are processes destroyed?

– At program exit.

– After some kinds of errors.

– When another process makes a “kill process” system call.

Slide 16

Process States

• Can think of processes as being in one of three states:

– “Running” — being executed by a CPU.

– “Blocked” — waiting for something to happen (I/O to complete, another

process to do something, etc.) and unable to do anything useful until it

does.

– “Ready” — not blocked, but waiting because all CPUs are currently

executing other processes.

• Possible transitions? Which ones require decision-making?

CSCI 3323 September 6, 2017

Slide 17

Process States, Continued

• Possible transitions (figure in textbook, p. 93):

– Running to blocked — happens when, e.g., a process makes an I/O

request and can’t continue until it’s complete.

– Blocked to ready — happens when the event the blocked process is

waiting for occurs.

– Running to ready, ready to running — needed if we want some sort of

time-sharing (give all non-blocked processes “a turn” frequently).

• Notice that moving to and from “blocked” state doesn’t involve

decision-making, but ready/running transitions do.

• The decision-maker — “scheduler” (to be discussed later). Often “running to

ready” is triggered by an interrupt (I/O, timer, etc.), and “ready to running”

involves this scheduler.

Slide 18

Implementing Processes

• Think about how you would implement this abstraction . . .

• First, you’d want a data structure to represent each process, to include —

what?

CSCI 3323 September 6, 2017

Slide 19

Implementing Processes, Continued

• Data structure to represent each process would include some way to

represent such things as:

– Process ID.

– Process state (running / ready / blocked).

– Information needed for context switch — a place to save program counter,

registers, etc.

– Other stuff as needed — e.g., a list of data structures for open files.

• Then you’d collect these into a table (or some similar structure) — “process

control table”, with individual data structures being “entries in the process

control table” or “process control blocks”.

Slide 20

Implementing Processes, Example — Linux

• Each process (“task”) is represented by a C struct containing information

similar to what we described.

• These structs are chained as a doubly-linked list; there is also a hash

table keyed by PID.

• (This is according to online information about the 2.4 kernel.)

CSCI 3323 September 6, 2017

Slide 21

Processes Versus Threads

• So far I’ve used “process” in an abstract/general way.

• In typical implementations, though, “process” is more specific — something

that has its own address space, list of open files, etc. Often these are called

“heavyweight processes”.

– Advantages — such processes don’t interfere with each other.

– Disadvantages — they can’t easily share data, switching between them is

expensive (“a lot of state” to save/restore).

• For some applications, might be nice to have something that implements the

abstract process idea but allows sharing data and faster context switching —

“threads”.

Slide 22

Threads

• So, threads are another way to implement the process abstraction.

• Typically, a thread is “owned” by a (heavyweight) process, and all threads

owned by a process share some of its state — address space, list of open

files.

• However, each thread has a “virtual CPU” (a distinct copy of registers,

including program counter).

• Implementation involves data structures similar to process table.

• Advantages / disadvantages (compared to processes)?

CSCI 3323 September 6, 2017

Slide 23

Threads, Continued

• Advantages: threads can share data (same address space), switching from

thread to thread is fairly fast.

• Disadvantages: sharing data has its hazards (more about this later).

Slide 24

Implementing Threads

• Two basic approaches — “in user space” and “in kernel space” Various hybrid

schemes also possible.

• Basic idea of “in user space” — operating system thinks it’s managing

single-threaded processes, all the work of managing multiple threads

happens via library calls within each process.

• Basic idea of “in kernel space” — operating system is involved in managing

threads, the work of managing multiple threads happens via system calls

(rather than user-level library calls).

• How do they compare?. . .

CSCI 3323 September 6, 2017

Slide 25

Implementing Threads, Continued

• Implementing in user space is likely more efficient — fewer system calls.

• Implementing in kernel space avoids some problems, though:

– If a thread blocks, it may do so in a way that blocks the whole process.

– Preemptive multitasking is difficult/impossible without help from the kernel,

as is using multiple CPUs.

Slide 26

Adding Multithreading

• If you’ve written multithreaded applications — moving from single-threaded to

multithreaded not trivial:

– Figure out how to split up computation among threads.

– Coordinate threads’ actions (including dealing properly with shared

variables).

• Similar problems in adding multithreading to systems-level programs:

– Deal properly with shared variables (including ones that may be hidden).

– Deal properly with signals/interrupts.

CSCI 3323 September 6, 2017

Slide 27

Implementing Threads, Example — Linux

• Early versions of Linux provided no support for kernel-space threading, but

there were libraries for the user-space version.

• More-recent kernels provide support, but in an interesting way — threads in

some ways are just processes with with some different flags allowing them to

share memory, etc.

Adding support for threads complicates process creation — the basic

mechanism (fork) duplicates an existing process, and if that process is

multithreaded, things can be interesting. Some details in chapter 10, or read

the POSIX standard for fork.

Slide 28

Minute Essay

• In a system with 8 CPUs and 100 processes, what are the maximum and

minimum number of processes that can be running? ready? blocked?

• How are you doing with regard to getting a copy of the textbook?

• If you did an internship this past summer and you are free Tuesdays at

3:35pm, please consider responding to Dr. Zhang’s request for student

speakers. 10 minutes, no slides . . .

CSCI 3323 September 6, 2017

Slide 29

Minute Essay Answer

• Blocked: Maximum of 100 (unless you assume that there’s an “idle” operating

system process that runs when nothing else does and never blocks, and

maybe one of these is needed for every CPU). Minimum of 0.

• Running: Maximum of 8, because there are 8 CPUs. Minimum of 0 (again

unless you assume that there’s an O/S process that runs when nothing else

does).

• Ready: Maximum of 92, since all CPUs will be running processes if there are

any that can be run. (Depending on details, you might have to add “except

during context switches, when the scheduler is choosing the next process to

run on a CPU”.) Minimum of 0, since they could all be blocked or running.

